频谱形式和de-Rham Hodge算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Jian Wang , Yong Wang , Mingyu Liu
{"title":"频谱形式和de-Rham Hodge算子","authors":"Jian Wang ,&nbsp;Yong Wang ,&nbsp;Mingyu Liu","doi":"10.1016/j.geomphys.2025.105535","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the trilinear functional of differential one-forms, spectral triple and spectral torsion for the Hodge-Dirac operator, we introduce a multilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue, which generalize the spectral torsion defined by Dabrowski-Sitarz-Zalecki. The main results of this paper recover two forms, torsion of the linear connection and four forms by the noncommutative residue and perturbed de-Rham Hodge operators, and provide an explicit computation of generalized spectral forms associated with the perturbed de-Rham Hodge Dirac triple.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"214 ","pages":"Article 105535"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral forms and de-Rham Hodge operator\",\"authors\":\"Jian Wang ,&nbsp;Yong Wang ,&nbsp;Mingyu Liu\",\"doi\":\"10.1016/j.geomphys.2025.105535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the trilinear functional of differential one-forms, spectral triple and spectral torsion for the Hodge-Dirac operator, we introduce a multilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue, which generalize the spectral torsion defined by Dabrowski-Sitarz-Zalecki. The main results of this paper recover two forms, torsion of the linear connection and four forms by the noncommutative residue and perturbed de-Rham Hodge operators, and provide an explicit computation of generalized spectral forms associated with the perturbed de-Rham Hodge Dirac triple.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"214 \",\"pages\":\"Article 105535\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001196\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001196","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于Hodge-Dirac算子的微分一形式、谱三重体和谱扭转的三线性泛函,我们引入了具有非交换残数的有限可和正则谱三重体的微分一形式的多线性泛函,推广了Dabrowski-Sitarz-Zalecki定义的谱扭转。本文的主要结果恢复了两种形式,即线性连接的扭转和四种形式的非交换剩余和摄动de-Rham Hodge算子,并提供了与摄动de-Rham Hodge Dirac三重相关的广义谱形式的显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral forms and de-Rham Hodge operator
Motivated by the trilinear functional of differential one-forms, spectral triple and spectral torsion for the Hodge-Dirac operator, we introduce a multilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue, which generalize the spectral torsion defined by Dabrowski-Sitarz-Zalecki. The main results of this paper recover two forms, torsion of the linear connection and four forms by the noncommutative residue and perturbed de-Rham Hodge operators, and provide an explicit computation of generalized spectral forms associated with the perturbed de-Rham Hodge Dirac triple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信