随着时间的推移,反应性AI反馈可以提高任务性能

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jacquelyn H. Berry
{"title":"随着时间的推移,反应性AI反馈可以提高任务性能","authors":"Jacquelyn H. Berry","doi":"10.1016/j.cogsys.2025.101361","DOIUrl":null,"url":null,"abstract":"<div><div>What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given <em>during</em> task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"92 ","pages":"Article 101361"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive AI feedback Improves task performance over time\",\"authors\":\"Jacquelyn H. Berry\",\"doi\":\"10.1016/j.cogsys.2025.101361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given <em>during</em> task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.</div></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"92 \",\"pages\":\"Article 101361\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041725000415\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000415","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

提供反馈以提高任务绩效的最佳方式是什么?事后通知别人他们的成功,他们通常可以清楚地看到,这对简单的任务是有效的。然而,对于复杂的、基于生态的任务,如驾驶直升机、远程操作机械臂或玩俄罗斯方块,这种类型的反馈可能不太有效。一些研究表明,在任务执行过程中给出的某些类型的反馈可能更适合于复杂的任务,而不是事后给出的反馈。这个问题是通过比较电子游戏《俄罗斯方块》中不同阶段的表现而得到解决的。《俄罗斯方块》新手玩家可以获得基于强化的反馈、指导性反馈或两者的结合。结果表明,随着时间的推移,指导性反馈,然后将两者结合起来,对提高表现最有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive AI feedback Improves task performance over time
What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given during task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信