{"title":"随着时间的推移,反应性AI反馈可以提高任务性能","authors":"Jacquelyn H. Berry","doi":"10.1016/j.cogsys.2025.101361","DOIUrl":null,"url":null,"abstract":"<div><div>What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given <em>during</em> task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"92 ","pages":"Article 101361"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive AI feedback Improves task performance over time\",\"authors\":\"Jacquelyn H. Berry\",\"doi\":\"10.1016/j.cogsys.2025.101361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given <em>during</em> task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.</div></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"92 \",\"pages\":\"Article 101361\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041725000415\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000415","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reactive AI feedback Improves task performance over time
What is the best way to give feedback to improve task performance? Informing someone of their success after the fact, which they can often plainly see, is effective for simple tasks. However, for complex, ecologically-based tasks with multiple subskills such as piloting a helicopter, remotely operating a robot arm, or playing Tetris, this type of feedback may be less effective. Some research suggests that certain types of feedback given during task performance maybe preferred for complex tasks rather than feedback given after the fact. This question was addressed by this pilot study which compared performance across sessions in the video game Tetris. Novice Tetris players were provided Reinforcement-based feedback, Instructive feedback, or a combination of the two. Results suggest that Instructive feedback, followed by combining the two, was most effective for improving performance over time.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.