具有非形式化伪微分算子的Kadomtsev-Petviashvili层次,非形式化解,和一个类似yang - mills的公式

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jean-Pierre Magnot , Enrique G. Reyes
{"title":"具有非形式化伪微分算子的Kadomtsev-Petviashvili层次,非形式化解,和一个类似yang - mills的公式","authors":"Jean-Pierre Magnot ,&nbsp;Enrique G. Reyes","doi":"10.1016/j.physletb.2025.139589","DOIUrl":null,"url":null,"abstract":"<div><div>We start from the classical Kadomtsev-Petviashvili (KP) hierarchy posed on formal pseudo-differential operators, and we produce new hierarchies of non-linear equations in the context of non-formal pseudo-differential operators lying in the Kontsevich and Vishik's odd class. In particular, we show that it is possible to <em>lift</em> the standard KP hierarchy to hierarchies of differential equations for non-formal pseudo-differential operators, and to recover the former starting from the latter. We prove that the corresponding Zakharov-Shabat equations hold in this context, and we express one of our hierarchies as the minimization of a class of Yang-Mills action functionals on a space of pseudo-differential connections whose curvature takes values in the Dixmier ideal. We finish by comparing our Kadomtsev-Petviashvili hierarchies in terms of the kind of solutions that they produce for the KP-II equation.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"867 ","pages":"Article 139589"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kadomtsev-Petviashvili hierarchies with non-formal pseudo-differential operators, non-formal solutions, and a Yang-Mills–like formulation\",\"authors\":\"Jean-Pierre Magnot ,&nbsp;Enrique G. Reyes\",\"doi\":\"10.1016/j.physletb.2025.139589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We start from the classical Kadomtsev-Petviashvili (KP) hierarchy posed on formal pseudo-differential operators, and we produce new hierarchies of non-linear equations in the context of non-formal pseudo-differential operators lying in the Kontsevich and Vishik's odd class. In particular, we show that it is possible to <em>lift</em> the standard KP hierarchy to hierarchies of differential equations for non-formal pseudo-differential operators, and to recover the former starting from the latter. We prove that the corresponding Zakharov-Shabat equations hold in this context, and we express one of our hierarchies as the minimization of a class of Yang-Mills action functionals on a space of pseudo-differential connections whose curvature takes values in the Dixmier ideal. We finish by comparing our Kadomtsev-Petviashvili hierarchies in terms of the kind of solutions that they produce for the KP-II equation.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"867 \",\"pages\":\"Article 139589\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325003508\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325003508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从形式化伪微分算子上的经典Kadomtsev-Petviashvili (KP)层次出发,在Kontsevich和Vishik奇类的非形式化伪微分算子的背景下,给出了非线性方程的新层次。特别地,我们证明了可以将标准KP层次提升到非形式伪微分算子的微分方程层次,并从后者开始恢复前者。我们证明了相应的Zakharov-Shabat方程在这种情况下成立,并将我们的一个层次表示为曲率在Dixmier理想中取值的伪微分连接空间上的一类Yang-Mills作用泛函的最小化。最后,我们将比较Kadomtsev-Petviashvili层次结构对KP-II方程产生的解的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kadomtsev-Petviashvili hierarchies with non-formal pseudo-differential operators, non-formal solutions, and a Yang-Mills–like formulation
We start from the classical Kadomtsev-Petviashvili (KP) hierarchy posed on formal pseudo-differential operators, and we produce new hierarchies of non-linear equations in the context of non-formal pseudo-differential operators lying in the Kontsevich and Vishik's odd class. In particular, we show that it is possible to lift the standard KP hierarchy to hierarchies of differential equations for non-formal pseudo-differential operators, and to recover the former starting from the latter. We prove that the corresponding Zakharov-Shabat equations hold in this context, and we express one of our hierarchies as the minimization of a class of Yang-Mills action functionals on a space of pseudo-differential connections whose curvature takes values in the Dixmier ideal. We finish by comparing our Kadomtsev-Petviashvili hierarchies in terms of the kind of solutions that they produce for the KP-II equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信