{"title":"具有给定秩和最大大小的p集的实对称矩阵","authors":"Zhibin Du , Carlos M. da Fonseca","doi":"10.1016/j.disc.2025.114572","DOIUrl":null,"url":null,"abstract":"<div><div>Given a real symmetric matrix <em>A</em> of rank <em>r</em>, the maximum size of a P-set of <em>A</em> does not exceed <span><math><mo>⌊</mo><mi>r</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. In this work, we fully characterize the maximal graphs for which there is a real symmetric matrix attaining this bound.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114572"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The real symmetric matrices with a given rank and a P-set with maximum size\",\"authors\":\"Zhibin Du , Carlos M. da Fonseca\",\"doi\":\"10.1016/j.disc.2025.114572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a real symmetric matrix <em>A</em> of rank <em>r</em>, the maximum size of a P-set of <em>A</em> does not exceed <span><math><mo>⌊</mo><mi>r</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. In this work, we fully characterize the maximal graphs for which there is a real symmetric matrix attaining this bound.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114572\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001803\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001803","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The real symmetric matrices with a given rank and a P-set with maximum size
Given a real symmetric matrix A of rank r, the maximum size of a P-set of A does not exceed . In this work, we fully characterize the maximal graphs for which there is a real symmetric matrix attaining this bound.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.