关于结构和实际可识别性:现状和结果的更新

IF 2.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mio Heinrich , Marcus Rosenblatt , Franz-Georg Wieland , Hans Stigter , Jens Timmer
{"title":"关于结构和实际可识别性:现状和结果的更新","authors":"Mio Heinrich ,&nbsp;Marcus Rosenblatt ,&nbsp;Franz-Georg Wieland ,&nbsp;Hans Stigter ,&nbsp;Jens Timmer","doi":"10.1016/j.coisb.2025.100546","DOIUrl":null,"url":null,"abstract":"<div><div>Identifiability of parameters in dynamical systems is a fundamental concept of mathematical modelling in systems biology and systems medicine. Both the structurally inherent identifiability of parameters in models and the practical identifiability of parameters, which arises from insufficient available data, play crucial roles in the development of useful models.</div><div>Here, we provide an overview of recent developments in the field of structural identifiability analysis of models based on ordinary differential equations, emphasising its importance for accurate parameter estimation. We extend an existing benchmark study by comparing the methods for structural identifiability analysis with the recently developed <em>StrucID</em>, showing it to be a fast, efficient and intuitive algorithm. Furthermore, this review highlights the challenges in practical identifiability analysis and the need for benchmarking with real-world models using experimental data. The potential benefits of standardising documentation for benchmarking models with experimental data and practical non-identifiabilities are stressed.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"41 ","pages":"Article 100546"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On structural and practical identifiability: Current status and update of results\",\"authors\":\"Mio Heinrich ,&nbsp;Marcus Rosenblatt ,&nbsp;Franz-Georg Wieland ,&nbsp;Hans Stigter ,&nbsp;Jens Timmer\",\"doi\":\"10.1016/j.coisb.2025.100546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifiability of parameters in dynamical systems is a fundamental concept of mathematical modelling in systems biology and systems medicine. Both the structurally inherent identifiability of parameters in models and the practical identifiability of parameters, which arises from insufficient available data, play crucial roles in the development of useful models.</div><div>Here, we provide an overview of recent developments in the field of structural identifiability analysis of models based on ordinary differential equations, emphasising its importance for accurate parameter estimation. We extend an existing benchmark study by comparing the methods for structural identifiability analysis with the recently developed <em>StrucID</em>, showing it to be a fast, efficient and intuitive algorithm. Furthermore, this review highlights the challenges in practical identifiability analysis and the need for benchmarking with real-world models using experimental data. The potential benefits of standardising documentation for benchmarking models with experimental data and practical non-identifiabilities are stressed.</div></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"41 \",\"pages\":\"Article 100546\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245231002500006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245231002500006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动态系统参数的可辨识性是系统生物学和系统医学中数学建模的一个基本概念。模型中参数的结构固有可识别性和由于可用数据不足而产生的参数的实际可识别性在开发有用的模型中起着至关重要的作用。在这里,我们概述了基于常微分方程的模型结构可识别性分析领域的最新发展,强调了其对准确参数估计的重要性。通过将现有的结构可识别性分析方法与最近开发的结构可识别性分析方法进行比较,我们扩展了已有的基准研究,表明它是一种快速、高效和直观的算法。此外,本综述强调了实际可识别性分析中的挑战,以及使用实验数据与现实世界模型进行基准测试的必要性。强调了对具有实验数据和实际不可识别性的基准模型进行标准化文档的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On structural and practical identifiability: Current status and update of results
Identifiability of parameters in dynamical systems is a fundamental concept of mathematical modelling in systems biology and systems medicine. Both the structurally inherent identifiability of parameters in models and the practical identifiability of parameters, which arises from insufficient available data, play crucial roles in the development of useful models.
Here, we provide an overview of recent developments in the field of structural identifiability analysis of models based on ordinary differential equations, emphasising its importance for accurate parameter estimation. We extend an existing benchmark study by comparing the methods for structural identifiability analysis with the recently developed StrucID, showing it to be a fast, efficient and intuitive algorithm. Furthermore, this review highlights the challenges in practical identifiability analysis and the need for benchmarking with real-world models using experimental data. The potential benefits of standardising documentation for benchmarking models with experimental data and practical non-identifiabilities are stressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信