通过混合特征集成解码TiO2纳米复合材料的结构-光学性质关系

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Renquan Lv, Weiwei Han, Zixu Zeng, Yi He, Lecheng Lei, Ping Li and Xingwang Zhang*, 
{"title":"通过混合特征集成解码TiO2纳米复合材料的结构-光学性质关系","authors":"Renquan Lv,&nbsp;Weiwei Han,&nbsp;Zixu Zeng,&nbsp;Yi He,&nbsp;Lecheng Lei,&nbsp;Ping Li and Xingwang Zhang*,&nbsp;","doi":"10.1021/acsapm.5c0086910.1021/acsapm.5c00869","DOIUrl":null,"url":null,"abstract":"<p >Optical titanium dioxide nanocomposites have a wide range of applications, but ill-defined structure–property relationships pose a challenge to the systematic discovery of functional materials. We designed a TGEML multimodal nanocomposite processing framework to address this challenge. The framework consists of a polymer multimodal featurizer named TGEML-polymer and a nanoparticle-specialized featurizer named TGEML-nano. TGEML-polymer integrates a Transformer-based graph neural network specialized in representing polymer information to capture the chemical semantic sequence and graph information of polymers. TGEML-nano includes processing strategies for nanoparticle dispersion scattering and particle size distribution to provide a comprehensive picture of the nanosystem. We correlated polymer feature vectors with nanosystem parameters to generate hybrid features. This enabled the successful construction of a quantitative “structure–refractive index” mapping. Moreover, the structure–optical property relationships were decoded through a multilevel feature interpretability analysis. In conclusion, TGEML can provide powerful and useful hybrid features for artificial intelligence to accelerate the development and design process of nanocomposites.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 10","pages":"6415–6426 6415–6426"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Structure–Optical Property Relationships in TiO2 Nanocomposites through Hybrid Features Integration\",\"authors\":\"Renquan Lv,&nbsp;Weiwei Han,&nbsp;Zixu Zeng,&nbsp;Yi He,&nbsp;Lecheng Lei,&nbsp;Ping Li and Xingwang Zhang*,&nbsp;\",\"doi\":\"10.1021/acsapm.5c0086910.1021/acsapm.5c00869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optical titanium dioxide nanocomposites have a wide range of applications, but ill-defined structure–property relationships pose a challenge to the systematic discovery of functional materials. We designed a TGEML multimodal nanocomposite processing framework to address this challenge. The framework consists of a polymer multimodal featurizer named TGEML-polymer and a nanoparticle-specialized featurizer named TGEML-nano. TGEML-polymer integrates a Transformer-based graph neural network specialized in representing polymer information to capture the chemical semantic sequence and graph information of polymers. TGEML-nano includes processing strategies for nanoparticle dispersion scattering and particle size distribution to provide a comprehensive picture of the nanosystem. We correlated polymer feature vectors with nanosystem parameters to generate hybrid features. This enabled the successful construction of a quantitative “structure–refractive index” mapping. Moreover, the structure–optical property relationships were decoded through a multilevel feature interpretability analysis. In conclusion, TGEML can provide powerful and useful hybrid features for artificial intelligence to accelerate the development and design process of nanocomposites.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 10\",\"pages\":\"6415–6426 6415–6426\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c00869\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c00869","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学二氧化钛纳米复合材料具有广泛的应用前景,但不明确的结构-性能关系给系统地发现功能材料带来了挑战。我们设计了一个TGEML多模态纳米复合材料处理框架来解决这一挑战。该框架由聚合物多模态特征剂TGEML-polymer和纳米粒子专用特征剂TGEML-nano组成。TGEML-polymer集成了一个基于transformer的图形神经网络,专门用于表示聚合物信息,以捕获聚合物的化学语义序列和图形信息。TGEML-nano包括纳米颗粒分散、散射和粒度分布的处理策略,以提供纳米系统的全面图像。我们将聚合物特征向量与纳米系统参数关联,生成混合特征。这使得定量的“结构-折射率”映射得以成功构建。此外,通过多层特征可解释性分析,解码了结构-光学性质之间的关系。综上所述,TGEML可以为人工智能提供强大而有用的混合特性,以加速纳米复合材料的开发和设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding Structure–Optical Property Relationships in TiO2 Nanocomposites through Hybrid Features Integration

Decoding Structure–Optical Property Relationships in TiO2 Nanocomposites through Hybrid Features Integration

Optical titanium dioxide nanocomposites have a wide range of applications, but ill-defined structure–property relationships pose a challenge to the systematic discovery of functional materials. We designed a TGEML multimodal nanocomposite processing framework to address this challenge. The framework consists of a polymer multimodal featurizer named TGEML-polymer and a nanoparticle-specialized featurizer named TGEML-nano. TGEML-polymer integrates a Transformer-based graph neural network specialized in representing polymer information to capture the chemical semantic sequence and graph information of polymers. TGEML-nano includes processing strategies for nanoparticle dispersion scattering and particle size distribution to provide a comprehensive picture of the nanosystem. We correlated polymer feature vectors with nanosystem parameters to generate hybrid features. This enabled the successful construction of a quantitative “structure–refractive index” mapping. Moreover, the structure–optical property relationships were decoded through a multilevel feature interpretability analysis. In conclusion, TGEML can provide powerful and useful hybrid features for artificial intelligence to accelerate the development and design process of nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信