Yongfeng Bu , Yuman Li , Shihao Wang , Shengda Tang , Zhaomin Zhu , Li Pan , Hui Li , Hongyu Liang
{"title":"用MXene作为过渡层改善碳电极体系的固-固界面相容性和电容保持","authors":"Yongfeng Bu , Yuman Li , Shihao Wang , Shengda Tang , Zhaomin Zhu , Li Pan , Hui Li , Hongyu Liang","doi":"10.1016/j.flatc.2025.100888","DOIUrl":null,"url":null,"abstract":"<div><div>The development of low-internal-resistance and high-stability Al current collectors suitable for supercapacitor organic electrolytes has been desired due to the highly susceptible oxidative passivation problem. Existing solution strategies mainly focus on traditional modification techniques such as carbon-based coatings and surface roughness modulation, making them significantly deficient in terms of interfacial impedance compatibility and electrochemical stability. Herein, an innovative interfacial work function matching strategy utilizing MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) as a transition layer material is first reported to address these concerns. Using a simple self-assembly method, we constructed an MXene transition layer (Al@MX) on the Al surface, which reduces the equivalent series resistance by more than 80 % and effectively improves capacitance retention from 7 % for bare Al to 61 % for Al@MX after 1000 cycles, as well as remarkable cycling stability. More importantly, the solid-solid interfacial electron transport barrier between Al current collector and YP50F active carbon material is significantly reduced by 24.7 %. These experimental results fully demonstrate that the proposed strategy effectively inhibits the oxidation of the Al current collector and suppresses the decay of capacitance. The unique two-dimensional structure of MXene, combined with its excellent electrochemical stability, offers a potential solution to match the work function of interfacial materials such as between the Al current collector and the carbon active material. This insight in the internal resistance reduction lays a critical technological foundation for developing high-performance SCs, and highlights the potential of MXene in enhancing the charge transfer and storage efficiency of energy storage devices.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"52 ","pages":"Article 100888"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of solid-solid interface compatibility and capacitance retention of carbon electrode systems by using MXene as a transition layer\",\"authors\":\"Yongfeng Bu , Yuman Li , Shihao Wang , Shengda Tang , Zhaomin Zhu , Li Pan , Hui Li , Hongyu Liang\",\"doi\":\"10.1016/j.flatc.2025.100888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of low-internal-resistance and high-stability Al current collectors suitable for supercapacitor organic electrolytes has been desired due to the highly susceptible oxidative passivation problem. Existing solution strategies mainly focus on traditional modification techniques such as carbon-based coatings and surface roughness modulation, making them significantly deficient in terms of interfacial impedance compatibility and electrochemical stability. Herein, an innovative interfacial work function matching strategy utilizing MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) as a transition layer material is first reported to address these concerns. Using a simple self-assembly method, we constructed an MXene transition layer (Al@MX) on the Al surface, which reduces the equivalent series resistance by more than 80 % and effectively improves capacitance retention from 7 % for bare Al to 61 % for Al@MX after 1000 cycles, as well as remarkable cycling stability. More importantly, the solid-solid interfacial electron transport barrier between Al current collector and YP50F active carbon material is significantly reduced by 24.7 %. These experimental results fully demonstrate that the proposed strategy effectively inhibits the oxidation of the Al current collector and suppresses the decay of capacitance. The unique two-dimensional structure of MXene, combined with its excellent electrochemical stability, offers a potential solution to match the work function of interfacial materials such as between the Al current collector and the carbon active material. This insight in the internal resistance reduction lays a critical technological foundation for developing high-performance SCs, and highlights the potential of MXene in enhancing the charge transfer and storage efficiency of energy storage devices.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"52 \",\"pages\":\"Article 100888\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725000820\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000820","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improvement of solid-solid interface compatibility and capacitance retention of carbon electrode systems by using MXene as a transition layer
The development of low-internal-resistance and high-stability Al current collectors suitable for supercapacitor organic electrolytes has been desired due to the highly susceptible oxidative passivation problem. Existing solution strategies mainly focus on traditional modification techniques such as carbon-based coatings and surface roughness modulation, making them significantly deficient in terms of interfacial impedance compatibility and electrochemical stability. Herein, an innovative interfacial work function matching strategy utilizing MXene (Ti3C2Tx) as a transition layer material is first reported to address these concerns. Using a simple self-assembly method, we constructed an MXene transition layer (Al@MX) on the Al surface, which reduces the equivalent series resistance by more than 80 % and effectively improves capacitance retention from 7 % for bare Al to 61 % for Al@MX after 1000 cycles, as well as remarkable cycling stability. More importantly, the solid-solid interfacial electron transport barrier between Al current collector and YP50F active carbon material is significantly reduced by 24.7 %. These experimental results fully demonstrate that the proposed strategy effectively inhibits the oxidation of the Al current collector and suppresses the decay of capacitance. The unique two-dimensional structure of MXene, combined with its excellent electrochemical stability, offers a potential solution to match the work function of interfacial materials such as between the Al current collector and the carbon active material. This insight in the internal resistance reduction lays a critical technological foundation for developing high-performance SCs, and highlights the potential of MXene in enhancing the charge transfer and storage efficiency of energy storage devices.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)