抗菌肽包被二硫化钼纳米颗粒增强抗菌效果和生物膜清除

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianping Yang, Runze Yang, Jiale Sun, Guanglan Peng, Mengjie Li, Wanzhen Li, Longbao Zhu, Weiwei Zhang*, Fei Ge*, Jun Wang* and Ping Song*, 
{"title":"抗菌肽包被二硫化钼纳米颗粒增强抗菌效果和生物膜清除","authors":"Jianping Yang,&nbsp;Runze Yang,&nbsp;Jiale Sun,&nbsp;Guanglan Peng,&nbsp;Mengjie Li,&nbsp;Wanzhen Li,&nbsp;Longbao Zhu,&nbsp;Weiwei Zhang*,&nbsp;Fei Ge*,&nbsp;Jun Wang* and Ping Song*,&nbsp;","doi":"10.1021/acsanm.5c0184910.1021/acsanm.5c01849","DOIUrl":null,"url":null,"abstract":"<p >To address the growing threat of drug-resistant bacteria and their biofilm-associated infections, we developed molybdenum disulfide (MoS<sub>2</sub>) nanoparticles coated with antimicrobial peptides (AMPs). The MoS<sub>2</sub>/AMP composite nanoparticles, synthesized through electrostatic phase interaction, maintained an impressive photothermal-conversion efficiency of 32.3%. The minimum inhibitory concentrations of the MoS<sub>2</sub>/AMP nanoparticles against multidrug-resistant <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> were approximately 78 and 64 μg/mL, respectively, under 808 nm near-infrared light irradiation for 5 min. Furthermore, around 90% of the biofilm was effectively ablated with 128 μg/mL of the composite nanoparticles under the same irradiation conditions. These composite nanoparticles demonstrated remarkable antibacterial and biofilm-eradication capabilities by harnessing the united effects of photothermal action and AMPs. Hemolysis and cytotoxicity assays showed that AMP-coated MoS<sub>2</sub> significantly diminished the hemolytic activity and cytotoxicity associated with AMP. This work suggests a potentially effective strategy for facilitating the commercial application of AMPs, and the composite nanoparticles MoS<sub>2</sub>/AMP hold considerable promise for antibacterial treatment of chronic infected wounds, biofilm elimination, and the mitigation of antibiotic resistance.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 20","pages":"10742–10753 10742–10753"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Peptide-Coated Molybdenum Disulfide Nanoparticles for Enhanced Antimicrobial Effect and Biofilm Eradication\",\"authors\":\"Jianping Yang,&nbsp;Runze Yang,&nbsp;Jiale Sun,&nbsp;Guanglan Peng,&nbsp;Mengjie Li,&nbsp;Wanzhen Li,&nbsp;Longbao Zhu,&nbsp;Weiwei Zhang*,&nbsp;Fei Ge*,&nbsp;Jun Wang* and Ping Song*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0184910.1021/acsanm.5c01849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To address the growing threat of drug-resistant bacteria and their biofilm-associated infections, we developed molybdenum disulfide (MoS<sub>2</sub>) nanoparticles coated with antimicrobial peptides (AMPs). The MoS<sub>2</sub>/AMP composite nanoparticles, synthesized through electrostatic phase interaction, maintained an impressive photothermal-conversion efficiency of 32.3%. The minimum inhibitory concentrations of the MoS<sub>2</sub>/AMP nanoparticles against multidrug-resistant <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> were approximately 78 and 64 μg/mL, respectively, under 808 nm near-infrared light irradiation for 5 min. Furthermore, around 90% of the biofilm was effectively ablated with 128 μg/mL of the composite nanoparticles under the same irradiation conditions. These composite nanoparticles demonstrated remarkable antibacterial and biofilm-eradication capabilities by harnessing the united effects of photothermal action and AMPs. Hemolysis and cytotoxicity assays showed that AMP-coated MoS<sub>2</sub> significantly diminished the hemolytic activity and cytotoxicity associated with AMP. This work suggests a potentially effective strategy for facilitating the commercial application of AMPs, and the composite nanoparticles MoS<sub>2</sub>/AMP hold considerable promise for antibacterial treatment of chronic infected wounds, biofilm elimination, and the mitigation of antibiotic resistance.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 20\",\"pages\":\"10742–10753 10742–10753\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01849\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01849","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决耐药细菌及其生物膜相关感染日益增长的威胁,我们开发了包裹有抗菌肽(AMPs)的二硫化钼(MoS2)纳米颗粒。通过静电相相互作用合成的MoS2/AMP复合纳米颗粒保持了令人印象深刻的32.3%的光热转换效率。在808 nm近红外光照射5 min的条件下,MoS2/AMP纳米颗粒对耐多药大肠杆菌和金黄色葡萄球菌的最低抑制浓度分别约为78和64 μg/mL。在相同照射条件下,128 μg/mL的复合纳米颗粒可有效降解约90%的生物膜。这些复合纳米颗粒通过利用光热作用和amp的联合作用,表现出显著的抗菌和生物膜根除能力。溶血和细胞毒性实验表明,AMP包被的MoS2显著降低了与AMP相关的溶血活性和细胞毒性。这项工作为促进AMP的商业应用提供了一种潜在的有效策略,并且复合纳米MoS2/AMP在慢性感染伤口的抗菌治疗、生物膜消除和减轻抗生素耐药性方面具有相当大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial Peptide-Coated Molybdenum Disulfide Nanoparticles for Enhanced Antimicrobial Effect and Biofilm Eradication

To address the growing threat of drug-resistant bacteria and their biofilm-associated infections, we developed molybdenum disulfide (MoS2) nanoparticles coated with antimicrobial peptides (AMPs). The MoS2/AMP composite nanoparticles, synthesized through electrostatic phase interaction, maintained an impressive photothermal-conversion efficiency of 32.3%. The minimum inhibitory concentrations of the MoS2/AMP nanoparticles against multidrug-resistant Escherichia coli and Staphylococcus aureus were approximately 78 and 64 μg/mL, respectively, under 808 nm near-infrared light irradiation for 5 min. Furthermore, around 90% of the biofilm was effectively ablated with 128 μg/mL of the composite nanoparticles under the same irradiation conditions. These composite nanoparticles demonstrated remarkable antibacterial and biofilm-eradication capabilities by harnessing the united effects of photothermal action and AMPs. Hemolysis and cytotoxicity assays showed that AMP-coated MoS2 significantly diminished the hemolytic activity and cytotoxicity associated with AMP. This work suggests a potentially effective strategy for facilitating the commercial application of AMPs, and the composite nanoparticles MoS2/AMP hold considerable promise for antibacterial treatment of chronic infected wounds, biofilm elimination, and the mitigation of antibiotic resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信