Tharmaraj Vairaperumal, Po-Tseng Lee and Ping-Yen Liu*,
{"title":"快速检测严重登革热病毒感染的便携式即时诊断平台和新兴的预测性生物标志物","authors":"Tharmaraj Vairaperumal, Po-Tseng Lee and Ping-Yen Liu*, ","doi":"10.1021/acssensors.5c0026310.1021/acssensors.5c00263","DOIUrl":null,"url":null,"abstract":"<p >Dengue virus (DENV) infection is a major global public health problem, particularly in tropical and subtropical regions where Aedes mosquitoes are prevalent. The clinical spectrum of dengue ranges from mild febrile illness to severe conditions such as dengue hemorrhagic fever and dengue shock syndrome. Early prediction of dengue progress is crucial for timely therapeutic medications, which can reduce both morbidity and mortality. Traditional diagnostic methods such as serological tests and polymerase chain reactions are often time-consuming and require sophisticated infrastructure and skilled personnel. To overcome these limitations, the development of point-of-care (POC) diagnosis platforms and novel predictive biomarkers is crucial to providing rapid, real-time diagnostic tools that can be used in low-resource settings and at the patient’s bedside. Predictive biomarkers enable the identification of disease risk in the early stages and can reduce hospitalization visits. This review offers a comprehensive overview of portable POC diagnosis platforms and emerging predictive biomarkers for the rapid diagnosis of severe DENV infection. Its provides an overview of its epidemiology, discusses the global burden of DENV, and explores DENV infection with different serotypes, as well as the clinical spectrum and severity of dengue. The key focus is on the latest advancements in POC diagnosis readout methods and portable POC devices for DENV diagnosis, including colorimetric assay, electrochemical method, lateral flow strip, and microfluidic chip platforms. In addition, the review article explores various emerging predictive biomarkers for the rapid detection of DENV, while also highlighting the limitations associated with protein, nucleic acid, and metabolic biomarkers. Finally, we address the current challenges, limitations, and potential future directions of POC diagnosis platforms for the diagnosis of severe DENV infection.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 5","pages":"3302–3316 3302–3316"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssensors.5c00263","citationCount":"0","resultStr":"{\"title\":\"Portable Point-of-Care Diagnosis Platforms and Emerging Predictive Biomarkers for Rapid Detection of Severe Dengue Viral Infection\",\"authors\":\"Tharmaraj Vairaperumal, Po-Tseng Lee and Ping-Yen Liu*, \",\"doi\":\"10.1021/acssensors.5c0026310.1021/acssensors.5c00263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dengue virus (DENV) infection is a major global public health problem, particularly in tropical and subtropical regions where Aedes mosquitoes are prevalent. The clinical spectrum of dengue ranges from mild febrile illness to severe conditions such as dengue hemorrhagic fever and dengue shock syndrome. Early prediction of dengue progress is crucial for timely therapeutic medications, which can reduce both morbidity and mortality. Traditional diagnostic methods such as serological tests and polymerase chain reactions are often time-consuming and require sophisticated infrastructure and skilled personnel. To overcome these limitations, the development of point-of-care (POC) diagnosis platforms and novel predictive biomarkers is crucial to providing rapid, real-time diagnostic tools that can be used in low-resource settings and at the patient’s bedside. Predictive biomarkers enable the identification of disease risk in the early stages and can reduce hospitalization visits. This review offers a comprehensive overview of portable POC diagnosis platforms and emerging predictive biomarkers for the rapid diagnosis of severe DENV infection. Its provides an overview of its epidemiology, discusses the global burden of DENV, and explores DENV infection with different serotypes, as well as the clinical spectrum and severity of dengue. The key focus is on the latest advancements in POC diagnosis readout methods and portable POC devices for DENV diagnosis, including colorimetric assay, electrochemical method, lateral flow strip, and microfluidic chip platforms. In addition, the review article explores various emerging predictive biomarkers for the rapid detection of DENV, while also highlighting the limitations associated with protein, nucleic acid, and metabolic biomarkers. Finally, we address the current challenges, limitations, and potential future directions of POC diagnosis platforms for the diagnosis of severe DENV infection.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 5\",\"pages\":\"3302–3316 3302–3316\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssensors.5c00263\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.5c00263\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c00263","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Portable Point-of-Care Diagnosis Platforms and Emerging Predictive Biomarkers for Rapid Detection of Severe Dengue Viral Infection
Dengue virus (DENV) infection is a major global public health problem, particularly in tropical and subtropical regions where Aedes mosquitoes are prevalent. The clinical spectrum of dengue ranges from mild febrile illness to severe conditions such as dengue hemorrhagic fever and dengue shock syndrome. Early prediction of dengue progress is crucial for timely therapeutic medications, which can reduce both morbidity and mortality. Traditional diagnostic methods such as serological tests and polymerase chain reactions are often time-consuming and require sophisticated infrastructure and skilled personnel. To overcome these limitations, the development of point-of-care (POC) diagnosis platforms and novel predictive biomarkers is crucial to providing rapid, real-time diagnostic tools that can be used in low-resource settings and at the patient’s bedside. Predictive biomarkers enable the identification of disease risk in the early stages and can reduce hospitalization visits. This review offers a comprehensive overview of portable POC diagnosis platforms and emerging predictive biomarkers for the rapid diagnosis of severe DENV infection. Its provides an overview of its epidemiology, discusses the global burden of DENV, and explores DENV infection with different serotypes, as well as the clinical spectrum and severity of dengue. The key focus is on the latest advancements in POC diagnosis readout methods and portable POC devices for DENV diagnosis, including colorimetric assay, electrochemical method, lateral flow strip, and microfluidic chip platforms. In addition, the review article explores various emerging predictive biomarkers for the rapid detection of DENV, while also highlighting the limitations associated with protein, nucleic acid, and metabolic biomarkers. Finally, we address the current challenges, limitations, and potential future directions of POC diagnosis platforms for the diagnosis of severe DENV infection.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.