Man Li, Suixuan Li, Zhihan Zhang, Chuanjin Su, Bryce Wong and Yongjie Hu*,
{"title":"通过材料和界面工程推进功率半导体热管理技术","authors":"Man Li, Suixuan Li, Zhihan Zhang, Chuanjin Su, Bryce Wong and Yongjie Hu*, ","doi":"10.1021/accountsmr.4c0034910.1021/accountsmr.4c00349","DOIUrl":null,"url":null,"abstract":"<p >Power semiconductors and chips are essential in modern electronics, driving applications from personal devices and data centers to energy technologies, vehicles, and Internet infrastructure. However, efficient heat dissipation remains a critical challenge, directly affecting their performance, reliability, and lifespan. High-power electronics based on wide- and ultrawide-bandgap semiconductors can exhibit power densities exceeding 10 kW/cm<sup>2</sup>, hundreds of times higher than digital electronics, posing significant thermal management challenges. Addressing this issue requires advanced materials and interface engineering, alongside a comprehensive understanding of materials physics, chemistry, transport dynamics, and various electronic, thermal, and mechanical properties.</p><p >Despite progress in thermal management solutions, the complex interplay of phonons, electrons, and their interactions with material lattices, defects, boundaries, and interfaces presents persistent challenges. This Account highlights key advancements in thermal management for power semiconductors and chips, with a focus on our group’s recent contributions. Our approach addresses several critical issues: (1) developing materials with ultrahigh thermal conductivity for enhanced heat dissipation, (2) reducing thermal boundary resistance between power semiconductors and emerging 2D materials, (3) improving thermal and mechanical contacts between chips and heat sinks, (4) innovating dynamic thermal management solutions, and (5) exploring novel principles of thermal transport and design for future technologies.</p><p >Our research philosophy integrates multiscale theoretical predictions with experimental validation to achieve a paradigm shift in thermal management. By leveraging first-principles calculations, the recent studies redefined traditional criteria for high-thermal-conductivity materials. Guided by these insights, we developed boron arsenide and boron phosphide, which exhibit record-high thermal conductivities of up to 1300 W/mK. Through phonon band structure engineering, we reduced TBR in GaN/BAs interfaces by over 8-fold compared to GaN/diamond interfaces. The combination of low TBR and high thermal conductivity significantly reduced hotspot temperatures, setting new benchmarks in thermal design for power electronics.</p><p >We further explored the anisotropic TBR properties of two-dimensional materials and Moiré patterns in twisted graphene, expanding the thermal design landscape. To address challenges at device–heat sink interfaces, we developed self-assembled boron arsenide composites with a thermal conductivity of 21 W/mK and exceptional mechanical compliance (∼100 kPa). These composites provide promising solutions for thermal management in flexible electronics and soft robotics.</p><p >In dynamic thermal management, we pioneered the concept of solid-state thermal transistors, enabling electrically controlled heat flow with unparalleled tunability, speed, reliability, and compatibility with integrated circuit fabrication. These innovations not only enhance thermal performance but also enable the exploration of novel transport physics, improving our fundamental understanding of thermal energy transport under extreme conditions.</p><p >Looking forward, we reflect on remaining challenges and identify opportunities for further advancements. These include scaling up the production of high-performance materials, integrating thermal solutions with existing manufacturing processes, and uncovering new physics to inspire next-generation power electronics technologies. By addressing these challenges, we aim to inspire future codesign strategies that enable the development of more efficient, reliable, sustainable, and high-performance electronic systems.</p>","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 5","pages":"563–576 563–576"},"PeriodicalIF":14.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/accountsmr.4c00349","citationCount":"0","resultStr":"{\"title\":\"Advancing Thermal Management Technology for Power Semiconductors through Materials and Interface Engineering\",\"authors\":\"Man Li, Suixuan Li, Zhihan Zhang, Chuanjin Su, Bryce Wong and Yongjie Hu*, \",\"doi\":\"10.1021/accountsmr.4c0034910.1021/accountsmr.4c00349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Power semiconductors and chips are essential in modern electronics, driving applications from personal devices and data centers to energy technologies, vehicles, and Internet infrastructure. However, efficient heat dissipation remains a critical challenge, directly affecting their performance, reliability, and lifespan. High-power electronics based on wide- and ultrawide-bandgap semiconductors can exhibit power densities exceeding 10 kW/cm<sup>2</sup>, hundreds of times higher than digital electronics, posing significant thermal management challenges. Addressing this issue requires advanced materials and interface engineering, alongside a comprehensive understanding of materials physics, chemistry, transport dynamics, and various electronic, thermal, and mechanical properties.</p><p >Despite progress in thermal management solutions, the complex interplay of phonons, electrons, and their interactions with material lattices, defects, boundaries, and interfaces presents persistent challenges. This Account highlights key advancements in thermal management for power semiconductors and chips, with a focus on our group’s recent contributions. Our approach addresses several critical issues: (1) developing materials with ultrahigh thermal conductivity for enhanced heat dissipation, (2) reducing thermal boundary resistance between power semiconductors and emerging 2D materials, (3) improving thermal and mechanical contacts between chips and heat sinks, (4) innovating dynamic thermal management solutions, and (5) exploring novel principles of thermal transport and design for future technologies.</p><p >Our research philosophy integrates multiscale theoretical predictions with experimental validation to achieve a paradigm shift in thermal management. By leveraging first-principles calculations, the recent studies redefined traditional criteria for high-thermal-conductivity materials. Guided by these insights, we developed boron arsenide and boron phosphide, which exhibit record-high thermal conductivities of up to 1300 W/mK. Through phonon band structure engineering, we reduced TBR in GaN/BAs interfaces by over 8-fold compared to GaN/diamond interfaces. The combination of low TBR and high thermal conductivity significantly reduced hotspot temperatures, setting new benchmarks in thermal design for power electronics.</p><p >We further explored the anisotropic TBR properties of two-dimensional materials and Moiré patterns in twisted graphene, expanding the thermal design landscape. To address challenges at device–heat sink interfaces, we developed self-assembled boron arsenide composites with a thermal conductivity of 21 W/mK and exceptional mechanical compliance (∼100 kPa). These composites provide promising solutions for thermal management in flexible electronics and soft robotics.</p><p >In dynamic thermal management, we pioneered the concept of solid-state thermal transistors, enabling electrically controlled heat flow with unparalleled tunability, speed, reliability, and compatibility with integrated circuit fabrication. These innovations not only enhance thermal performance but also enable the exploration of novel transport physics, improving our fundamental understanding of thermal energy transport under extreme conditions.</p><p >Looking forward, we reflect on remaining challenges and identify opportunities for further advancements. These include scaling up the production of high-performance materials, integrating thermal solutions with existing manufacturing processes, and uncovering new physics to inspire next-generation power electronics technologies. By addressing these challenges, we aim to inspire future codesign strategies that enable the development of more efficient, reliable, sustainable, and high-performance electronic systems.</p>\",\"PeriodicalId\":72040,\"journal\":{\"name\":\"Accounts of materials research\",\"volume\":\"6 5\",\"pages\":\"563–576 563–576\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/accountsmr.4c00349\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/accountsmr.4c00349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/accountsmr.4c00349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancing Thermal Management Technology for Power Semiconductors through Materials and Interface Engineering
Power semiconductors and chips are essential in modern electronics, driving applications from personal devices and data centers to energy technologies, vehicles, and Internet infrastructure. However, efficient heat dissipation remains a critical challenge, directly affecting their performance, reliability, and lifespan. High-power electronics based on wide- and ultrawide-bandgap semiconductors can exhibit power densities exceeding 10 kW/cm2, hundreds of times higher than digital electronics, posing significant thermal management challenges. Addressing this issue requires advanced materials and interface engineering, alongside a comprehensive understanding of materials physics, chemistry, transport dynamics, and various electronic, thermal, and mechanical properties.
Despite progress in thermal management solutions, the complex interplay of phonons, electrons, and their interactions with material lattices, defects, boundaries, and interfaces presents persistent challenges. This Account highlights key advancements in thermal management for power semiconductors and chips, with a focus on our group’s recent contributions. Our approach addresses several critical issues: (1) developing materials with ultrahigh thermal conductivity for enhanced heat dissipation, (2) reducing thermal boundary resistance between power semiconductors and emerging 2D materials, (3) improving thermal and mechanical contacts between chips and heat sinks, (4) innovating dynamic thermal management solutions, and (5) exploring novel principles of thermal transport and design for future technologies.
Our research philosophy integrates multiscale theoretical predictions with experimental validation to achieve a paradigm shift in thermal management. By leveraging first-principles calculations, the recent studies redefined traditional criteria for high-thermal-conductivity materials. Guided by these insights, we developed boron arsenide and boron phosphide, which exhibit record-high thermal conductivities of up to 1300 W/mK. Through phonon band structure engineering, we reduced TBR in GaN/BAs interfaces by over 8-fold compared to GaN/diamond interfaces. The combination of low TBR and high thermal conductivity significantly reduced hotspot temperatures, setting new benchmarks in thermal design for power electronics.
We further explored the anisotropic TBR properties of two-dimensional materials and Moiré patterns in twisted graphene, expanding the thermal design landscape. To address challenges at device–heat sink interfaces, we developed self-assembled boron arsenide composites with a thermal conductivity of 21 W/mK and exceptional mechanical compliance (∼100 kPa). These composites provide promising solutions for thermal management in flexible electronics and soft robotics.
In dynamic thermal management, we pioneered the concept of solid-state thermal transistors, enabling electrically controlled heat flow with unparalleled tunability, speed, reliability, and compatibility with integrated circuit fabrication. These innovations not only enhance thermal performance but also enable the exploration of novel transport physics, improving our fundamental understanding of thermal energy transport under extreme conditions.
Looking forward, we reflect on remaining challenges and identify opportunities for further advancements. These include scaling up the production of high-performance materials, integrating thermal solutions with existing manufacturing processes, and uncovering new physics to inspire next-generation power electronics technologies. By addressing these challenges, we aim to inspire future codesign strategies that enable the development of more efficient, reliable, sustainable, and high-performance electronic systems.