通过亚纳米级聚合物封装的金-银合金等离子体纳米粒子在SERS应用中的场增强调谐

Thirumalesh B.S,  and , Ramesh Asapu*, 
{"title":"通过亚纳米级聚合物封装的金-银合金等离子体纳米粒子在SERS应用中的场增强调谐","authors":"Thirumalesh B.S,&nbsp; and ,&nbsp;Ramesh Asapu*,&nbsp;","doi":"10.1021/acsaom.5c0008710.1021/acsaom.5c00087","DOIUrl":null,"url":null,"abstract":"<p >In this work, bimetallic Au–Ag nanoparticles are encapsulated with an ultrathin polymer shell with a high degree of control over the shell thickness up to the subnanometer level, i.e., at a rate of around 0.25 nm per layer, which provides stability without compromising the plasmonic characteristics. The effect of depositing polymer layers was observed in the red shift in the surface plasmon resonance peak wavelength of the Au–Ag alloy nanoparticles and proven numerically using a finite element method. The effect of polymer encapsulation on the field enhancement property of the Au–Ag alloy plasmon nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS), and the variation in the enhancement factor is in line with the well-established distance decay of field enhancement in SERS. The near-electric field simulations also supported the distance decay of field enhancement where the localization of fields by the nanoscale polymer shell can be controlled on the order of 10–100 times in the hot spots using a dimer model. By controlling the thickness of the encapsulating polymer shell at the subnano scale, this work demonstrates that the field enhancement can be tuned using the simple wet chemical colloidal layer-by-layer encapsulation technique, which has an important scope in plasmonic sensing applications.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 5","pages":"1129–1136 1129–1136"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Enhancement Tuning through Subnanoscale Polymer Encapsulation of Gold–Silver Alloy Plasmon Nanoparticles for SERS Applications\",\"authors\":\"Thirumalesh B.S,&nbsp; and ,&nbsp;Ramesh Asapu*,&nbsp;\",\"doi\":\"10.1021/acsaom.5c0008710.1021/acsaom.5c00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, bimetallic Au–Ag nanoparticles are encapsulated with an ultrathin polymer shell with a high degree of control over the shell thickness up to the subnanometer level, i.e., at a rate of around 0.25 nm per layer, which provides stability without compromising the plasmonic characteristics. The effect of depositing polymer layers was observed in the red shift in the surface plasmon resonance peak wavelength of the Au–Ag alloy nanoparticles and proven numerically using a finite element method. The effect of polymer encapsulation on the field enhancement property of the Au–Ag alloy plasmon nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS), and the variation in the enhancement factor is in line with the well-established distance decay of field enhancement in SERS. The near-electric field simulations also supported the distance decay of field enhancement where the localization of fields by the nanoscale polymer shell can be controlled on the order of 10–100 times in the hot spots using a dimer model. By controlling the thickness of the encapsulating polymer shell at the subnano scale, this work demonstrates that the field enhancement can be tuned using the simple wet chemical colloidal layer-by-layer encapsulation technique, which has an important scope in plasmonic sensing applications.</p>\",\"PeriodicalId\":29803,\"journal\":{\"name\":\"ACS Applied Optical Materials\",\"volume\":\"3 5\",\"pages\":\"1129–1136 1129–1136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Optical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaom.5c00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,双金属Au-Ag纳米粒子被封装在超薄聚合物外壳中,外壳厚度高度可控制到亚纳米水平,即每层约0.25 nm的速率,在不影响等离子体特性的情况下提供稳定性。沉积聚合物层的影响观察到表面等离子体共振峰波长的红移,并通过有限元方法进行了数值验证。利用表面增强拉曼光谱(SERS)研究了聚合物包封对Au-Ag合金等离子体激元纳米粒子场增强性能的影响,增强因子的变化符合SERS中已知的场增强距离衰减规律。近电场模拟也支持了场增强的距离衰减,在二聚体模型中,纳米级聚合物外壳的场定位可以控制在热点的10-100倍。通过在亚纳米尺度上控制封装聚合物外壳的厚度,本工作表明,可以使用简单的湿化学胶体层接层封装技术来调节场增强,这在等离子体传感应用中具有重要的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field Enhancement Tuning through Subnanoscale Polymer Encapsulation of Gold–Silver Alloy Plasmon Nanoparticles for SERS Applications

In this work, bimetallic Au–Ag nanoparticles are encapsulated with an ultrathin polymer shell with a high degree of control over the shell thickness up to the subnanometer level, i.e., at a rate of around 0.25 nm per layer, which provides stability without compromising the plasmonic characteristics. The effect of depositing polymer layers was observed in the red shift in the surface plasmon resonance peak wavelength of the Au–Ag alloy nanoparticles and proven numerically using a finite element method. The effect of polymer encapsulation on the field enhancement property of the Au–Ag alloy plasmon nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS), and the variation in the enhancement factor is in line with the well-established distance decay of field enhancement in SERS. The near-electric field simulations also supported the distance decay of field enhancement where the localization of fields by the nanoscale polymer shell can be controlled on the order of 10–100 times in the hot spots using a dimer model. By controlling the thickness of the encapsulating polymer shell at the subnano scale, this work demonstrates that the field enhancement can be tuned using the simple wet chemical colloidal layer-by-layer encapsulation technique, which has an important scope in plasmonic sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信