单过渡金属原子掺杂二硫化钼作为氮还原反应高效电催化剂的DFT研究

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoyu Luo, Yu Zhang, Xun Qi, Yanjing Wu, Yuhong Fan, Dan Su, Jie Wen*, Arshid Mahmood Ali, Fangli Jing and Hui Zhang*, 
{"title":"单过渡金属原子掺杂二硫化钼作为氮还原反应高效电催化剂的DFT研究","authors":"Xiaoyu Luo,&nbsp;Yu Zhang,&nbsp;Xun Qi,&nbsp;Yanjing Wu,&nbsp;Yuhong Fan,&nbsp;Dan Su,&nbsp;Jie Wen*,&nbsp;Arshid Mahmood Ali,&nbsp;Fangli Jing and Hui Zhang*,&nbsp;","doi":"10.1021/acsanm.5c0164410.1021/acsanm.5c01644","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic nitrogen reduction reaction (eNRR) offers a promising green and sustainable pathway for ammonia synthesis. In this study, the eNRR performance of single transition metal atom doped Mo vacancy monolayer MoS<sub>2</sub> catalysts was systematically investigated through density functional theory (DFT) calculations. Results reveal that Re-doped MoS<sub>2</sub> exhibits excellent eNRR catalytic activity with a limiting potential of only −0.296 V for the rate-determining step, while the hydrogen evolution reaction (HER) is effectively suppressed at this potential. Further mechanistic analysis indicates that the strong interaction between transition metal atoms and the MoS<sub>2</sub> substrate, as well as the optimized electronic structure, synergistically promotes N<sub>2</sub> adsorption and activation, thus lowering the energy barrier of the eNRR. This study provides theoretical guidance for the design of high-performance eNRR catalysts.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 20","pages":"10695–10703 10695–10703"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT Study: Single Transition Metal Atom Doped MoS2 as Efficient Electrocatalysts for the Nitrogen Reduction Reaction\",\"authors\":\"Xiaoyu Luo,&nbsp;Yu Zhang,&nbsp;Xun Qi,&nbsp;Yanjing Wu,&nbsp;Yuhong Fan,&nbsp;Dan Su,&nbsp;Jie Wen*,&nbsp;Arshid Mahmood Ali,&nbsp;Fangli Jing and Hui Zhang*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0164410.1021/acsanm.5c01644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrocatalytic nitrogen reduction reaction (eNRR) offers a promising green and sustainable pathway for ammonia synthesis. In this study, the eNRR performance of single transition metal atom doped Mo vacancy monolayer MoS<sub>2</sub> catalysts was systematically investigated through density functional theory (DFT) calculations. Results reveal that Re-doped MoS<sub>2</sub> exhibits excellent eNRR catalytic activity with a limiting potential of only −0.296 V for the rate-determining step, while the hydrogen evolution reaction (HER) is effectively suppressed at this potential. Further mechanistic analysis indicates that the strong interaction between transition metal atoms and the MoS<sub>2</sub> substrate, as well as the optimized electronic structure, synergistically promotes N<sub>2</sub> adsorption and activation, thus lowering the energy barrier of the eNRR. This study provides theoretical guidance for the design of high-performance eNRR catalysts.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 20\",\"pages\":\"10695–10703 10695–10703\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01644\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01644","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化氮还原反应(eNRR)为氨合成提供了一条绿色、可持续的途径。本研究通过密度泛函理论(DFT)计算,系统研究了单过渡金属原子掺杂Mo空位单层MoS2催化剂的eNRR性能。结果表明,重掺杂的MoS2表现出优异的eNRR催化活性,在速率决定步骤的极限电位仅为- 0.296 V,而析氢反应(HER)在该电位下被有效抑制。进一步的机理分析表明,过渡金属原子与MoS2衬底之间的强相互作用以及优化后的电子结构协同促进了N2的吸附和活化,从而降低了eNRR的能垒。该研究为高性能eNRR催化剂的设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A DFT Study: Single Transition Metal Atom Doped MoS2 as Efficient Electrocatalysts for the Nitrogen Reduction Reaction

A DFT Study: Single Transition Metal Atom Doped MoS2 as Efficient Electrocatalysts for the Nitrogen Reduction Reaction

The electrocatalytic nitrogen reduction reaction (eNRR) offers a promising green and sustainable pathway for ammonia synthesis. In this study, the eNRR performance of single transition metal atom doped Mo vacancy monolayer MoS2 catalysts was systematically investigated through density functional theory (DFT) calculations. Results reveal that Re-doped MoS2 exhibits excellent eNRR catalytic activity with a limiting potential of only −0.296 V for the rate-determining step, while the hydrogen evolution reaction (HER) is effectively suppressed at this potential. Further mechanistic analysis indicates that the strong interaction between transition metal atoms and the MoS2 substrate, as well as the optimized electronic structure, synergistically promotes N2 adsorption and activation, thus lowering the energy barrier of the eNRR. This study provides theoretical guidance for the design of high-performance eNRR catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信