{"title":"双向磷光神经可塑性用于全光神经视觉。","authors":"Zifan Li,Zicheng Zhang,Yueyue Wu,Zhe Zhou,Zixi He,Bin Liu,Xingyue Ji,Fa Zhang,Chen Chen,Fei Xiu,Xuemei Dong,Yuhan Zhang,Qiye Wang,Xiujuan Li,Wei Huang,Juqing Liu","doi":"10.1021/acsnano.5c03994","DOIUrl":null,"url":null,"abstract":"All-optical neuromorphics that can capture, process, and output photonic signals are in prospect to advance optical computing and imaging. Bidirectional neuroplasticity is essential for executing training and inference in optical neural networks, but most of the all-optical hardware only exhibits unidirectional weight modulation. Here, we explore bidirectional neuroplasticity in carbon dot phosphorescence (CDP) with potentiation and depression synaptic behaviors capable of neuroregulation for photonic intensity. This function enables the CDP as a neuroconverter to convert pulse light into excitatory and inhibitory light output for neuromorphic vision owing to the delayed release and superimposition dynamics of excitons in persistent phosphorescence, which allows for image digitization or direct observation. By integration with an optical neural network, the real-time motion tracking of light spots, including trajectory, direction, and speed, can be recorded and recognized, with a high accuracy of 96%. Such phosphor-based neuromorphics can be extended to other phosphorescent architectures for all-optical imaging and computing.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"32 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional Phosphorescent Neuroplasticity for All-Optical Neurovision.\",\"authors\":\"Zifan Li,Zicheng Zhang,Yueyue Wu,Zhe Zhou,Zixi He,Bin Liu,Xingyue Ji,Fa Zhang,Chen Chen,Fei Xiu,Xuemei Dong,Yuhan Zhang,Qiye Wang,Xiujuan Li,Wei Huang,Juqing Liu\",\"doi\":\"10.1021/acsnano.5c03994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-optical neuromorphics that can capture, process, and output photonic signals are in prospect to advance optical computing and imaging. Bidirectional neuroplasticity is essential for executing training and inference in optical neural networks, but most of the all-optical hardware only exhibits unidirectional weight modulation. Here, we explore bidirectional neuroplasticity in carbon dot phosphorescence (CDP) with potentiation and depression synaptic behaviors capable of neuroregulation for photonic intensity. This function enables the CDP as a neuroconverter to convert pulse light into excitatory and inhibitory light output for neuromorphic vision owing to the delayed release and superimposition dynamics of excitons in persistent phosphorescence, which allows for image digitization or direct observation. By integration with an optical neural network, the real-time motion tracking of light spots, including trajectory, direction, and speed, can be recorded and recognized, with a high accuracy of 96%. Such phosphor-based neuromorphics can be extended to other phosphorescent architectures for all-optical imaging and computing.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c03994\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bidirectional Phosphorescent Neuroplasticity for All-Optical Neurovision.
All-optical neuromorphics that can capture, process, and output photonic signals are in prospect to advance optical computing and imaging. Bidirectional neuroplasticity is essential for executing training and inference in optical neural networks, but most of the all-optical hardware only exhibits unidirectional weight modulation. Here, we explore bidirectional neuroplasticity in carbon dot phosphorescence (CDP) with potentiation and depression synaptic behaviors capable of neuroregulation for photonic intensity. This function enables the CDP as a neuroconverter to convert pulse light into excitatory and inhibitory light output for neuromorphic vision owing to the delayed release and superimposition dynamics of excitons in persistent phosphorescence, which allows for image digitization or direct observation. By integration with an optical neural network, the real-time motion tracking of light spots, including trajectory, direction, and speed, can be recorded and recognized, with a high accuracy of 96%. Such phosphor-based neuromorphics can be extended to other phosphorescent architectures for all-optical imaging and computing.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.