{"title":"m6A修饰被合并到细菌mRNA中,没有特定的功能益处。","authors":"Klara Szydlo,Leonardo Santos,Thomas W Christian,Sunita Maharjan,Amir Dorsey,Isao Masuda,Jingxuan Jia,Yuan Wu,Weixin Tang,Ya-Ming Hou,Zoya Ignatova","doi":"10.1093/nar/gkaf425","DOIUrl":null,"url":null,"abstract":"N 6-Methyladenosine (m6A), the most abundant modification in eukaryotic messenger RNAs (mRNAs), has also been found at a low level in bacterial mRNAs. However, enzyme(s) that introduce m6A modification on mRNAs in bacteria remain elusive. In this work, we combine deep-sequencing approaches that identify m6A sites with in vitro biochemical studies to identify putative m6A methyltransferases that would modify Escherichia coli mRNAs. We tested four uncharacterized candidates predicted to encode proteins with putative methyltransferase domains, whose deletion decreased the m6A level. However, in vitro analysis with the purified putative methyltransferases revealed that none of them installs m6A on mRNA. Exposure to heat and oxidative stress also changed the m6A level; however, we found no clear correlation between the m6A change and the specific stress. Considering two deep-sequencing approaches with different resolution, we found that m6A methylation on bacterial mRNAs is very low and appears randomly introduced. These results suggest that, in contrast to eukaryotes, the m6A modification in bacterial mRNA lacks a direct enzymatic recognition mechanism and has no clear biological function.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"136 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m6A modification is incorporated into bacterial mRNA without specific functional benefit.\",\"authors\":\"Klara Szydlo,Leonardo Santos,Thomas W Christian,Sunita Maharjan,Amir Dorsey,Isao Masuda,Jingxuan Jia,Yuan Wu,Weixin Tang,Ya-Ming Hou,Zoya Ignatova\",\"doi\":\"10.1093/nar/gkaf425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N 6-Methyladenosine (m6A), the most abundant modification in eukaryotic messenger RNAs (mRNAs), has also been found at a low level in bacterial mRNAs. However, enzyme(s) that introduce m6A modification on mRNAs in bacteria remain elusive. In this work, we combine deep-sequencing approaches that identify m6A sites with in vitro biochemical studies to identify putative m6A methyltransferases that would modify Escherichia coli mRNAs. We tested four uncharacterized candidates predicted to encode proteins with putative methyltransferase domains, whose deletion decreased the m6A level. However, in vitro analysis with the purified putative methyltransferases revealed that none of them installs m6A on mRNA. Exposure to heat and oxidative stress also changed the m6A level; however, we found no clear correlation between the m6A change and the specific stress. Considering two deep-sequencing approaches with different resolution, we found that m6A methylation on bacterial mRNAs is very low and appears randomly introduced. These results suggest that, in contrast to eukaryotes, the m6A modification in bacterial mRNA lacks a direct enzymatic recognition mechanism and has no clear biological function.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf425\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
m6A modification is incorporated into bacterial mRNA without specific functional benefit.
N 6-Methyladenosine (m6A), the most abundant modification in eukaryotic messenger RNAs (mRNAs), has also been found at a low level in bacterial mRNAs. However, enzyme(s) that introduce m6A modification on mRNAs in bacteria remain elusive. In this work, we combine deep-sequencing approaches that identify m6A sites with in vitro biochemical studies to identify putative m6A methyltransferases that would modify Escherichia coli mRNAs. We tested four uncharacterized candidates predicted to encode proteins with putative methyltransferase domains, whose deletion decreased the m6A level. However, in vitro analysis with the purified putative methyltransferases revealed that none of them installs m6A on mRNA. Exposure to heat and oxidative stress also changed the m6A level; however, we found no clear correlation between the m6A change and the specific stress. Considering two deep-sequencing approaches with different resolution, we found that m6A methylation on bacterial mRNAs is very low and appears randomly introduced. These results suggest that, in contrast to eukaryotes, the m6A modification in bacterial mRNA lacks a direct enzymatic recognition mechanism and has no clear biological function.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.