城市高湿环境下夜间花粉破碎的数据驱动检测

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Hao Zhang*, Ian Crawford, Congbo Song, Martin Gallagher, Zhonghua Zheng, Man Nin Chan, Sinan Xing, Hing Bun Martin Lee and David Topping*, 
{"title":"城市高湿环境下夜间花粉破碎的数据驱动检测","authors":"Hao Zhang*,&nbsp;Ian Crawford,&nbsp;Congbo Song,&nbsp;Martin Gallagher,&nbsp;Zhonghua Zheng,&nbsp;Man Nin Chan,&nbsp;Sinan Xing,&nbsp;Hing Bun Martin Lee and David Topping*,&nbsp;","doi":"10.1021/acs.est.4c13905","DOIUrl":null,"url":null,"abstract":"<p >Biological particulate matter (BioPM) in the urban environment can affect human health and climate. Pollen, a key BioPM component, produces smaller particles when fragmented, significantly impacting public health. However, detecting pollen fragmentation and identifying the meteorological thresholds that trigger it remain largely hypothetical and uncertain. Here, we develop a novel data-driven approach integrating deep learning, efficient clustering methods, and automatic machine learning with explainable methods to identify BioPM components and quantify their environmental drivers. For the first time, we demonstrate the ability to routinely detect pollen fragmentation using only meteorological and online BioPM spectral data. Our findings resolve the previously unclear humidity threshold, confirming that fragmentation is triggered when relative humidity exceeds 90%. Our results find that this humidity-induced fragmentation occurs at night─a critical, yet previously overlooked, time, resulting in the highest pollen concentrations of the day. This critical yet previously unidentified fragmentation phenomenon may have significant health impacts on urban cohorts.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 25","pages":"12763–12774"},"PeriodicalIF":11.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Detection of Nocturnal Pollen Fragmentation Triggered by High Humidity in an Urban Environment\",\"authors\":\"Hao Zhang*,&nbsp;Ian Crawford,&nbsp;Congbo Song,&nbsp;Martin Gallagher,&nbsp;Zhonghua Zheng,&nbsp;Man Nin Chan,&nbsp;Sinan Xing,&nbsp;Hing Bun Martin Lee and David Topping*,&nbsp;\",\"doi\":\"10.1021/acs.est.4c13905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biological particulate matter (BioPM) in the urban environment can affect human health and climate. Pollen, a key BioPM component, produces smaller particles when fragmented, significantly impacting public health. However, detecting pollen fragmentation and identifying the meteorological thresholds that trigger it remain largely hypothetical and uncertain. Here, we develop a novel data-driven approach integrating deep learning, efficient clustering methods, and automatic machine learning with explainable methods to identify BioPM components and quantify their environmental drivers. For the first time, we demonstrate the ability to routinely detect pollen fragmentation using only meteorological and online BioPM spectral data. Our findings resolve the previously unclear humidity threshold, confirming that fragmentation is triggered when relative humidity exceeds 90%. Our results find that this humidity-induced fragmentation occurs at night─a critical, yet previously overlooked, time, resulting in the highest pollen concentrations of the day. This critical yet previously unidentified fragmentation phenomenon may have significant health impacts on urban cohorts.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 25\",\"pages\":\"12763–12774\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c13905\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c13905","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

城市环境中的生物颗粒物(BioPM)会影响人类健康和气候。花粉是生物膜的一种关键成分,在破碎时产生更小的颗粒,对公众健康产生重大影响。然而,检测花粉破碎和确定触发它的气象阈值在很大程度上仍然是假设和不确定的。在这里,我们开发了一种新的数据驱动方法,将深度学习、高效聚类方法和自动机器学习与可解释的方法集成在一起,以识别BioPM组件并量化其环境驱动因素。我们首次展示了仅使用气象和在线BioPM光谱数据常规检测花粉破碎的能力。我们的研究结果解决了之前不明确的湿度阈值,确认了当相对湿度超过90%时就会触发碎片。我们的研究结果发现,这种湿度引起的碎裂发生在夜间──这是一个关键的、以前被忽视的时间,导致花粉浓度在白天最高。这种严重但以前未查明的碎片化现象可能对城市人群的健康产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Detection of Nocturnal Pollen Fragmentation Triggered by High Humidity in an Urban Environment

Data-Driven Detection of Nocturnal Pollen Fragmentation Triggered by High Humidity in an Urban Environment

Biological particulate matter (BioPM) in the urban environment can affect human health and climate. Pollen, a key BioPM component, produces smaller particles when fragmented, significantly impacting public health. However, detecting pollen fragmentation and identifying the meteorological thresholds that trigger it remain largely hypothetical and uncertain. Here, we develop a novel data-driven approach integrating deep learning, efficient clustering methods, and automatic machine learning with explainable methods to identify BioPM components and quantify their environmental drivers. For the first time, we demonstrate the ability to routinely detect pollen fragmentation using only meteorological and online BioPM spectral data. Our findings resolve the previously unclear humidity threshold, confirming that fragmentation is triggered when relative humidity exceeds 90%. Our results find that this humidity-induced fragmentation occurs at night─a critical, yet previously overlooked, time, resulting in the highest pollen concentrations of the day. This critical yet previously unidentified fragmentation phenomenon may have significant health impacts on urban cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信