{"title":"链接燃烧衍生的磁铁矿和黑碳:来自东亚下风地区PM2.5磁性表征的见解。","authors":"Nozomu Tsuchiya,Fumikazu Ikemori,Kazuo Kawasaki,Reina Yamada,Mitsuhiko Hata,Masami Furuuchi,Yoko Iwamoto,Naoki Kaneyasu,Yasuhiro Sadanaga,Takahiro Watanabe,Takayuki Kameda,Masayo Minami,Toshio Nakamura,Atsushi Matsuki","doi":"10.1021/acs.est.4c14187","DOIUrl":null,"url":null,"abstract":"Combustion-derived magnetite has recently attracted attention for its health risks and potential impact on atmospheric heating/cooling. This study provides new observational insights into the relationship between black carbon (BC) and magnetite at a remote site in East Asia, Japan, focusing on combustion sources, seasonal trends, and potential overestimation of BC by the light-absorbing magnetite. Magnetic measurements of PM2.5 samples, complemented by detailed chemical analyses, reveal similar temporal variations between BC and magnetite while demonstrating that the relative abundance of magnetite to BC varies by combustion source, driving seasonal trends. Magnetite abundance during combustion episodes was found to follow the order: coal > oil > biomass, with mass concentrations roughly estimated via magnetization to be 9-10%, 5-6%, and <2% of BC, respectively. Furthermore, magnetite was estimated to contribute up to 5% of the BC absorption coefficient, suggesting the considerable overestimation of BC depending on the source. Although regionality and source mixing should be further verified, these findings show that magnetic measurements of archived samples can offer valuable contributions to reconstructing long-term combustion trends or overestimates in conventional observations of BC.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"17 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking Combustion-Derived Magnetite and Black Carbon: Insights from Magnetic Characterization of PM2.5 in Downwind East Asia.\",\"authors\":\"Nozomu Tsuchiya,Fumikazu Ikemori,Kazuo Kawasaki,Reina Yamada,Mitsuhiko Hata,Masami Furuuchi,Yoko Iwamoto,Naoki Kaneyasu,Yasuhiro Sadanaga,Takahiro Watanabe,Takayuki Kameda,Masayo Minami,Toshio Nakamura,Atsushi Matsuki\",\"doi\":\"10.1021/acs.est.4c14187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combustion-derived magnetite has recently attracted attention for its health risks and potential impact on atmospheric heating/cooling. This study provides new observational insights into the relationship between black carbon (BC) and magnetite at a remote site in East Asia, Japan, focusing on combustion sources, seasonal trends, and potential overestimation of BC by the light-absorbing magnetite. Magnetic measurements of PM2.5 samples, complemented by detailed chemical analyses, reveal similar temporal variations between BC and magnetite while demonstrating that the relative abundance of magnetite to BC varies by combustion source, driving seasonal trends. Magnetite abundance during combustion episodes was found to follow the order: coal > oil > biomass, with mass concentrations roughly estimated via magnetization to be 9-10%, 5-6%, and <2% of BC, respectively. Furthermore, magnetite was estimated to contribute up to 5% of the BC absorption coefficient, suggesting the considerable overestimation of BC depending on the source. Although regionality and source mixing should be further verified, these findings show that magnetic measurements of archived samples can offer valuable contributions to reconstructing long-term combustion trends or overestimates in conventional observations of BC.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c14187\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c14187","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Linking Combustion-Derived Magnetite and Black Carbon: Insights from Magnetic Characterization of PM2.5 in Downwind East Asia.
Combustion-derived magnetite has recently attracted attention for its health risks and potential impact on atmospheric heating/cooling. This study provides new observational insights into the relationship between black carbon (BC) and magnetite at a remote site in East Asia, Japan, focusing on combustion sources, seasonal trends, and potential overestimation of BC by the light-absorbing magnetite. Magnetic measurements of PM2.5 samples, complemented by detailed chemical analyses, reveal similar temporal variations between BC and magnetite while demonstrating that the relative abundance of magnetite to BC varies by combustion source, driving seasonal trends. Magnetite abundance during combustion episodes was found to follow the order: coal > oil > biomass, with mass concentrations roughly estimated via magnetization to be 9-10%, 5-6%, and <2% of BC, respectively. Furthermore, magnetite was estimated to contribute up to 5% of the BC absorption coefficient, suggesting the considerable overestimation of BC depending on the source. Although regionality and source mixing should be further verified, these findings show that magnetic measurements of archived samples can offer valuable contributions to reconstructing long-term combustion trends or overestimates in conventional observations of BC.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.