一个不断壮大的双面明星家庭

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Bokyoung Kim
{"title":"一个不断壮大的双面明星家庭","authors":"Bokyoung Kim","doi":"10.1038/s41550-025-02570-2","DOIUrl":null,"url":null,"abstract":"<p>Roughly one in five white dwarfs (WDs) within 100 pc undergo spectral transitions from one type to another. These changes are driven by internal convective processes that mix surface materials, leaving surface compositions homogeneous. However, a few very rare cases — so-called double-faced WDs — show spectral variability over just a few hours, a timescale too rapid and surface composition too inhomogeneous for homogeneous atmospheric models to explain. Adam Moss and colleagues discovered one such double-faced WD, SDSS J0847+4842, and revisited another known WD, LB 8915, confirming its double-faced nature. By investigating these two, as well as five previously known double-faced WDs, the authors propose that magnetism drives the observed frequent spectral-type changes.</p><p>Through a time-series spectroscopic survey of six unresolved WD binary candidates, the authors found that one of them (SDSS J0847+4842) is not a binary but a massive single WD showing spectroscopic variations over 6.5 or 8.9 hours. They also revisited LB 8915 — a known DBA-type WD — whose time-series spectra show hydrogen-line variability every 5.7 hours, while helium lines remain consistently strong. The time-resolved spectra of both objects are well explained by a model with hydrogen polar caps and a helium equatorial belt. These discoveries increase the number of known double-faced WDs to seven.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"57 1","pages":"623-623"},"PeriodicalIF":12.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A growing family of two-faced stars\",\"authors\":\"Bokyoung Kim\",\"doi\":\"10.1038/s41550-025-02570-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Roughly one in five white dwarfs (WDs) within 100 pc undergo spectral transitions from one type to another. These changes are driven by internal convective processes that mix surface materials, leaving surface compositions homogeneous. However, a few very rare cases — so-called double-faced WDs — show spectral variability over just a few hours, a timescale too rapid and surface composition too inhomogeneous for homogeneous atmospheric models to explain. Adam Moss and colleagues discovered one such double-faced WD, SDSS J0847+4842, and revisited another known WD, LB 8915, confirming its double-faced nature. By investigating these two, as well as five previously known double-faced WDs, the authors propose that magnetism drives the observed frequent spectral-type changes.</p><p>Through a time-series spectroscopic survey of six unresolved WD binary candidates, the authors found that one of them (SDSS J0847+4842) is not a binary but a massive single WD showing spectroscopic variations over 6.5 or 8.9 hours. They also revisited LB 8915 — a known DBA-type WD — whose time-series spectra show hydrogen-line variability every 5.7 hours, while helium lines remain consistently strong. The time-resolved spectra of both objects are well explained by a model with hydrogen polar caps and a helium equatorial belt. These discoveries increase the number of known double-faced WDs to seven.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"57 1\",\"pages\":\"623-623\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02570-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02570-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大约五分之一的白矮星(WDs)会经历光谱从一种类型到另一种类型的转变。这些变化是由内部对流过程驱动的,它混合了表面材料,使表面成分均匀。然而,一些非常罕见的情况——所谓的双面WDs——在短短几小时内显示出光谱变化,这一时间尺度太快,地表成分太不均匀,以致于均匀大气模式无法解释。亚当·莫斯和他的同事们发现了一颗这样的双面星云SDSS J0847+4842,并重新观测了另一颗已知的星云LB 8915,证实了它的双面性质。通过研究这两个,以及先前已知的五个双面WDs,作者提出磁力驱动了观测到的频繁的光谱类型变化。通过对六个未确定的WD双星候选者进行时间序列光谱调查,作者发现其中一个(SDSS J0847+4842)不是双星,而是一个巨大的单一WD,其光谱变化超过6.5或8.9小时。他们还重新观测了LB 8915——一颗已知的dba型超新星——它的时间序列光谱显示氢谱线每5.7小时变化一次,而氦谱线却始终保持强劲。两个天体的时间分辨光谱都可以用氢极帽和氦赤道带的模型很好地解释。这些发现使已知双面井的数量增加到7个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A growing family of two-faced stars

Roughly one in five white dwarfs (WDs) within 100 pc undergo spectral transitions from one type to another. These changes are driven by internal convective processes that mix surface materials, leaving surface compositions homogeneous. However, a few very rare cases — so-called double-faced WDs — show spectral variability over just a few hours, a timescale too rapid and surface composition too inhomogeneous for homogeneous atmospheric models to explain. Adam Moss and colleagues discovered one such double-faced WD, SDSS J0847+4842, and revisited another known WD, LB 8915, confirming its double-faced nature. By investigating these two, as well as five previously known double-faced WDs, the authors propose that magnetism drives the observed frequent spectral-type changes.

Through a time-series spectroscopic survey of six unresolved WD binary candidates, the authors found that one of them (SDSS J0847+4842) is not a binary but a massive single WD showing spectroscopic variations over 6.5 or 8.9 hours. They also revisited LB 8915 — a known DBA-type WD — whose time-series spectra show hydrogen-line variability every 5.7 hours, while helium lines remain consistently strong. The time-resolved spectra of both objects are well explained by a model with hydrogen polar caps and a helium equatorial belt. These discoveries increase the number of known double-faced WDs to seven.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信