Amdad Chowdury, Benjamin J. Eggleton, Dawn T.H. Tan
{"title":"超富硅氮化布拉格光栅调制不稳定性、Fermi-Pasta-Ulam递归和图样形成的理论研究","authors":"Amdad Chowdury, Benjamin J. Eggleton, Dawn T.H. Tan","doi":"10.1515/nanoph-2025-0073","DOIUrl":null,"url":null,"abstract":"Ultra-silicon-rich nitride Bragg gratings provide a powerful platform for precise light manipulation in photonic chips. Their exceptionally high nonlinearity and strong grating-induced dispersion near the stop-band edges significantly reduce the power and length required for chip-scale light–matter interactions. Using computational methods, we theoretically investigate modulational instability, Fermi–Pasta–Ulam recurrence, and pattern formation in this platform within the framework of the Akhmediev breather. We assess their experimental feasibility and show that this platform can generate a high-quality pulse train at the output. We demonstrate that modulational instability can be triggered in the gratings as short as 1–2 mm, leading to Akhmediev breather formation. By analyzing the full dispersion profile, we identify pump wavelengths that generate new frequencies and show that the grating also can produce a comb-like discrete spectrum. Furthermore, we reveal that even with high loss, parametric amplification at the grating output is possible, highlighting its potential as a nonlinear platform for frequency comb generation, wavelength-multiplexed data transmission, and high-precision pulse processing.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"19 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical studies of modulation instability, Fermi–Pasta–Ulam recurrence and pattern formation in an ultra-silicon-rich-nitride Bragg grating\",\"authors\":\"Amdad Chowdury, Benjamin J. Eggleton, Dawn T.H. Tan\",\"doi\":\"10.1515/nanoph-2025-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-silicon-rich nitride Bragg gratings provide a powerful platform for precise light manipulation in photonic chips. Their exceptionally high nonlinearity and strong grating-induced dispersion near the stop-band edges significantly reduce the power and length required for chip-scale light–matter interactions. Using computational methods, we theoretically investigate modulational instability, Fermi–Pasta–Ulam recurrence, and pattern formation in this platform within the framework of the Akhmediev breather. We assess their experimental feasibility and show that this platform can generate a high-quality pulse train at the output. We demonstrate that modulational instability can be triggered in the gratings as short as 1–2 mm, leading to Akhmediev breather formation. By analyzing the full dispersion profile, we identify pump wavelengths that generate new frequencies and show that the grating also can produce a comb-like discrete spectrum. Furthermore, we reveal that even with high loss, parametric amplification at the grating output is possible, highlighting its potential as a nonlinear platform for frequency comb generation, wavelength-multiplexed data transmission, and high-precision pulse processing.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0073\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0073","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical studies of modulation instability, Fermi–Pasta–Ulam recurrence and pattern formation in an ultra-silicon-rich-nitride Bragg grating
Ultra-silicon-rich nitride Bragg gratings provide a powerful platform for precise light manipulation in photonic chips. Their exceptionally high nonlinearity and strong grating-induced dispersion near the stop-band edges significantly reduce the power and length required for chip-scale light–matter interactions. Using computational methods, we theoretically investigate modulational instability, Fermi–Pasta–Ulam recurrence, and pattern formation in this platform within the framework of the Akhmediev breather. We assess their experimental feasibility and show that this platform can generate a high-quality pulse train at the output. We demonstrate that modulational instability can be triggered in the gratings as short as 1–2 mm, leading to Akhmediev breather formation. By analyzing the full dispersion profile, we identify pump wavelengths that generate new frequencies and show that the grating also can produce a comb-like discrete spectrum. Furthermore, we reveal that even with high loss, parametric amplification at the grating output is possible, highlighting its potential as a nonlinear platform for frequency comb generation, wavelength-multiplexed data transmission, and high-precision pulse processing.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.