超高速信号的片上光学光谱切片合成

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang
{"title":"超高速信号的片上光学光谱切片合成","authors":"Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang","doi":"10.1002/lpor.202402166","DOIUrl":null,"url":null,"abstract":"Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s<jats:sup>−1</jats:sup>, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"15 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On‐Chip Optical Spectrally Sliced Synthesis for Ultra‐High‐Speed Signals\",\"authors\":\"Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang\",\"doi\":\"10.1002/lpor.202402166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s<jats:sup>−1</jats:sup>, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202402166\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402166","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

宽带光信号产生是广泛应用领域的基础,包括高速光通信,微波光子学和计量学。传统上,高波特率信号的产生受到互补金属氧化物半导体(CMOS)数模转换器(DAC)的“电子瓶颈”的限制,使得将符号速率扩展到200波特以上具有挑战性。在这里,首次通过集成在薄膜铌酸锂(TFLN)平台上的光谱切片合成证明了超宽带光信号的产生。这种频谱切片发射机可以使用有限带宽和采样率的现有dac显着扩大符号速率。TFLN平台的片上集成不仅提供了比体分立元件更高的信息密度,而且通过精确的相位匹配,大大提高了合成高波特率光信号的稳定性和性能。通过在芯片上合成两个频谱切片,并使用仅128 GSa s−1的DAC采样率,产生波特率和线率分别高达240 Gbaud和2 Tbit/s的Nyquist单载波信号。高性能紧凑型光发射机提供了可扩展带宽的新范例,为大规模人工智能(AI)集群释放了前所未有的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On‐Chip Optical Spectrally Sliced Synthesis for Ultra‐High‐Speed Signals
Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s−1, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信