Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang
{"title":"超高速信号的片上光学光谱切片合成","authors":"Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang","doi":"10.1002/lpor.202402166","DOIUrl":null,"url":null,"abstract":"Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s<jats:sup>−1</jats:sup>, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"15 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On‐Chip Optical Spectrally Sliced Synthesis for Ultra‐High‐Speed Signals\",\"authors\":\"Lingjun Zhou, Xiang Cai, Xiansong Fang, Yixiao Zhu, Yunchen Li, Hui Chen, Qibing Wang, Junbo Zhu, Chao Li, Xiaomin Nie, Zhixue He, Lei Wang, Ke Li, Shaohua Yu, Fan Zhang\",\"doi\":\"10.1002/lpor.202402166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s<jats:sup>−1</jats:sup>, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202402166\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402166","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
On‐Chip Optical Spectrally Sliced Synthesis for Ultra‐High‐Speed Signals
Broadband optical signal generation is fundamental across a wide range of application areas including high‐speed optical communication, microwave photonics, and metrology. Traditionally, high baud‐rate signal generation has been constrained by the “electronic bottleneck” of complementary metal‐oxide‐semiconductor (CMOS) digital‐to‐analog converters (DAC), making it challenging to scale up the symbol rate to 200 Gbaud and beyond. Here, for the first time, the generation of ultra‐broadband optical signals are demonstrated via spectrally‐sliced synthesis integrated on a thin‐film lithium niobate (TFLN) platform. This spectrally sliced transmitter can significantly scale up the symbol rate using existing DACs with limited bandwidth and sampling rates. The on‐chip integration in the TFLN platform not only offers a higher information density compared to bulk discrete components, but also greatly enhances the stability and performance of synthesized high baud rate optical signals through accurate phase matching. By synthesizing two spectral slices on‐chip and using DAC sampling rates of only 128 GSa s−1, Nyquist single‐carrier signals are generated with baud rates and line rates up to 240 Gbaud and 2 Tbit/s, respectively. The high‐performance and compact optical transmitter offers a new paradigm in scalable bandwidth, unlocking unprecedented capacity for massive artificial intelligence (AI) clusters.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.