非对称超级电容器多层NiCo-MOF@MnO2异质结构的合理构建及优化电荷存储行为

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jien Li , Rongling Du , Ruipeng Wang , Jinglv Feng , Shuang Luo
{"title":"非对称超级电容器多层NiCo-MOF@MnO2异质结构的合理构建及优化电荷存储行为","authors":"Jien Li ,&nbsp;Rongling Du ,&nbsp;Ruipeng Wang ,&nbsp;Jinglv Feng ,&nbsp;Shuang Luo","doi":"10.1016/j.apsusc.2025.163595","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese dioxide (MnO<sub>2</sub>) is a promising supercapacitor electrode material with its high theoretical capacitance, abundant resources, and eco-friendliness. However, poor ion transport and volume expansion during cycling hinder its practical performance. In contrast, metal–organic frameworks (MOFs) provide extensive surface area and structural versatility but suffer from low intrinsic conductivity, limiting their direct application as electrodes. Here, a MOF-derived NiCo-MOF@MnO<sub>2</sub> heterostructure is successfully anchored onto activated carbon cloth (AC) to prepare a self-supported electrode (NCM@MO-1) through a rational synthetic regulation strategy. The NCM@MO-1 electrode presents a unique overlapping massive nanostructure conducive to exposing more active sites and shortening the diffusion path of electrolyte ions. Owing to its optimized structure and composition, the NCM@MO-1 electrode exhibits improved specific capacitance of 15.2 F/cm<sup>2</sup> at 2 mA/cm<sup>2</sup> and ultrahigh rate performance of 65 % at 50 mA/cm<sup>2</sup>. Moreover, the NCM@MO-1//annealed AC (AAC) asymmetric supercapacitor (ASC) achieves a superb energy density of 1.191 mWh/cm<sup>2</sup> at 1.715 mW/cm<sup>2</sup> and an exceptional cycle durability (about 85.67 % retention over 10,000 cycles). The meticulously prepared NCM@MO-1 electrode presents significant potential for diverse applications, especially in the realm of high-performance supercapacitors, where the material is poised to serve as a key enabler for next-generation devices.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"706 ","pages":"Article 163595"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational construction of multilayer NiCo-MOF@MnO2 heterostructures with optimized charge storage behavior for asymmetric supercapacitors\",\"authors\":\"Jien Li ,&nbsp;Rongling Du ,&nbsp;Ruipeng Wang ,&nbsp;Jinglv Feng ,&nbsp;Shuang Luo\",\"doi\":\"10.1016/j.apsusc.2025.163595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Manganese dioxide (MnO<sub>2</sub>) is a promising supercapacitor electrode material with its high theoretical capacitance, abundant resources, and eco-friendliness. However, poor ion transport and volume expansion during cycling hinder its practical performance. In contrast, metal–organic frameworks (MOFs) provide extensive surface area and structural versatility but suffer from low intrinsic conductivity, limiting their direct application as electrodes. Here, a MOF-derived NiCo-MOF@MnO<sub>2</sub> heterostructure is successfully anchored onto activated carbon cloth (AC) to prepare a self-supported electrode (NCM@MO-1) through a rational synthetic regulation strategy. The NCM@MO-1 electrode presents a unique overlapping massive nanostructure conducive to exposing more active sites and shortening the diffusion path of electrolyte ions. Owing to its optimized structure and composition, the NCM@MO-1 electrode exhibits improved specific capacitance of 15.2 F/cm<sup>2</sup> at 2 mA/cm<sup>2</sup> and ultrahigh rate performance of 65 % at 50 mA/cm<sup>2</sup>. Moreover, the NCM@MO-1//annealed AC (AAC) asymmetric supercapacitor (ASC) achieves a superb energy density of 1.191 mWh/cm<sup>2</sup> at 1.715 mW/cm<sup>2</sup> and an exceptional cycle durability (about 85.67 % retention over 10,000 cycles). The meticulously prepared NCM@MO-1 electrode presents significant potential for diverse applications, especially in the realm of high-performance supercapacitors, where the material is poised to serve as a key enabler for next-generation devices.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"706 \",\"pages\":\"Article 163595\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225013108\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225013108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化锰(MnO2)具有理论电容高、资源丰富、生态友好等优点,是一种很有前途的超级电容器电极材料。然而,循环过程中离子输运差和体积膨胀阻碍了其实际性能。相比之下,金属有机框架(mof)具有广泛的表面积和结构通用性,但其固有电导率较低,限制了其作为电极的直接应用。本研究通过合理的合成调控策略,将mof衍生的NiCo-MOF@MnO2异质结构成功地固定在活性炭布(AC)上,制备了自支撑电极(NCM@MO-1)。NCM@MO-1电极呈现出独特的重叠块状纳米结构,有利于暴露更多的活性位点,缩短电解质离子的扩散路径。由于结构和组成的优化,NCM@MO-1电极在2 mA/cm2时的比电容提高到15.2 F/cm2,在50 mA/cm2时的倍率性能达到65 %。此外,NCM@MO-1//退火AC (AAC)不对称超级电容器(ASC)在1.715 mW/cm2时达到了1.191 mWh/cm2的超强能量密度,并且具有出色的循环耐久性(在10,000次循环中约85.67 %的保留率)。精心制备的NCM@MO-1电极在各种应用中具有巨大的潜力,特别是在高性能超级电容器领域,该材料有望成为下一代设备的关键推动者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational construction of multilayer NiCo-MOF@MnO2 heterostructures with optimized charge storage behavior for asymmetric supercapacitors

Rational construction of multilayer NiCo-MOF@MnO2 heterostructures with optimized charge storage behavior for asymmetric supercapacitors
Manganese dioxide (MnO2) is a promising supercapacitor electrode material with its high theoretical capacitance, abundant resources, and eco-friendliness. However, poor ion transport and volume expansion during cycling hinder its practical performance. In contrast, metal–organic frameworks (MOFs) provide extensive surface area and structural versatility but suffer from low intrinsic conductivity, limiting their direct application as electrodes. Here, a MOF-derived NiCo-MOF@MnO2 heterostructure is successfully anchored onto activated carbon cloth (AC) to prepare a self-supported electrode (NCM@MO-1) through a rational synthetic regulation strategy. The NCM@MO-1 electrode presents a unique overlapping massive nanostructure conducive to exposing more active sites and shortening the diffusion path of electrolyte ions. Owing to its optimized structure and composition, the NCM@MO-1 electrode exhibits improved specific capacitance of 15.2 F/cm2 at 2 mA/cm2 and ultrahigh rate performance of 65 % at 50 mA/cm2. Moreover, the NCM@MO-1//annealed AC (AAC) asymmetric supercapacitor (ASC) achieves a superb energy density of 1.191 mWh/cm2 at 1.715 mW/cm2 and an exceptional cycle durability (about 85.67 % retention over 10,000 cycles). The meticulously prepared NCM@MO-1 electrode presents significant potential for diverse applications, especially in the realm of high-performance supercapacitors, where the material is poised to serve as a key enabler for next-generation devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信