多主元素氧化物在体积纳米多孔金属间合金上的原位形成,用于安培级电流密度下的超高效制氢

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Gao, Wenyu Lu, Shuo Shuang, Quanfeng He, Zhaoyi Ding, Yujing Liu, Baisong Guo, Zhe Jia, Shijun Zhao, Yong Yang
{"title":"多主元素氧化物在体积纳米多孔金属间合金上的原位形成,用于安培级电流密度下的超高效制氢","authors":"Xiang Gao, Wenyu Lu, Shuo Shuang, Quanfeng He, Zhaoyi Ding, Yujing Liu, Baisong Guo, Zhe Jia, Shijun Zhao, Yong Yang","doi":"10.1021/acsami.5c03821","DOIUrl":null,"url":null,"abstract":"Developing highly efficient and durable electrocatalysts for hydrogen production via water splitting remains a pivotal challenge for sustainable energy. In this work, we present a bulk nanoporous C15 intermetallic alloy synthesized through electrodealloying of a eutectic multiprincipal element precursor. Unlike conventional metallic nanostructures, this catalyst features an ultrathin multiprincipal element oxide (MPEO) layer, which generates abundant active sites and achieves exceptional hydrogen evolution reaction (HER) activity, surpassing most reported catalysts. Crucially, the material demonstrates unprecedented stability at industrial-level current densities (1 A/cm<sup>2</sup> at 396 mV), enabled by operando amorphization of the MPEO layer during prolonged operation. This structural evolution stabilizes the catalyst–electrolyte interface while retaining intrinsic activity. Our findings redefine design principles for robust, high-performance electrocatalysts by integrating bulk intermetallic architectures with self-optimizing surface chemistry.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Formation of Multi-Principal Element Oxide on a Bulk Nanoporous Intermetallic Alloy for Ultra-Efficient Hydrogen Production at Ampere-Level Current Density\",\"authors\":\"Xiang Gao, Wenyu Lu, Shuo Shuang, Quanfeng He, Zhaoyi Ding, Yujing Liu, Baisong Guo, Zhe Jia, Shijun Zhao, Yong Yang\",\"doi\":\"10.1021/acsami.5c03821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing highly efficient and durable electrocatalysts for hydrogen production via water splitting remains a pivotal challenge for sustainable energy. In this work, we present a bulk nanoporous C15 intermetallic alloy synthesized through electrodealloying of a eutectic multiprincipal element precursor. Unlike conventional metallic nanostructures, this catalyst features an ultrathin multiprincipal element oxide (MPEO) layer, which generates abundant active sites and achieves exceptional hydrogen evolution reaction (HER) activity, surpassing most reported catalysts. Crucially, the material demonstrates unprecedented stability at industrial-level current densities (1 A/cm<sup>2</sup> at 396 mV), enabled by operando amorphization of the MPEO layer during prolonged operation. This structural evolution stabilizes the catalyst–electrolyte interface while retaining intrinsic activity. Our findings redefine design principles for robust, high-performance electrocatalysts by integrating bulk intermetallic architectures with self-optimizing surface chemistry.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c03821\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03821","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效耐用的水裂解制氢电催化剂仍然是可持续能源的关键挑战。在这项工作中,我们提出了一种通过共晶多主元素前驱体电合金化合成的块状纳米多孔C15金属间合金。与传统的金属纳米结构不同,该催化剂具有超薄的多主元素氧化物(MPEO)层,可产生丰富的活性位点,并实现卓越的析氢反应(HER)活性,超过大多数报道的催化剂。至关重要的是,该材料在工业级电流密度(396 mV时1 A/cm2)下表现出前所未有的稳定性,这是由于在长时间工作期间MPEO层的操作非晶化实现的。这种结构演变稳定了催化剂-电解质界面,同时保持了固有活性。我们的研究结果通过将大块金属间结构与自优化表面化学相结合,重新定义了稳健、高性能电催化剂的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Formation of Multi-Principal Element Oxide on a Bulk Nanoporous Intermetallic Alloy for Ultra-Efficient Hydrogen Production at Ampere-Level Current Density

In Situ Formation of Multi-Principal Element Oxide on a Bulk Nanoporous Intermetallic Alloy for Ultra-Efficient Hydrogen Production at Ampere-Level Current Density
Developing highly efficient and durable electrocatalysts for hydrogen production via water splitting remains a pivotal challenge for sustainable energy. In this work, we present a bulk nanoporous C15 intermetallic alloy synthesized through electrodealloying of a eutectic multiprincipal element precursor. Unlike conventional metallic nanostructures, this catalyst features an ultrathin multiprincipal element oxide (MPEO) layer, which generates abundant active sites and achieves exceptional hydrogen evolution reaction (HER) activity, surpassing most reported catalysts. Crucially, the material demonstrates unprecedented stability at industrial-level current densities (1 A/cm2 at 396 mV), enabled by operando amorphization of the MPEO layer during prolonged operation. This structural evolution stabilizes the catalyst–electrolyte interface while retaining intrinsic activity. Our findings redefine design principles for robust, high-performance electrocatalysts by integrating bulk intermetallic architectures with self-optimizing surface chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信