{"title":"基于模型的闭环安全临界化学反应器故障诊断:一项实验研究","authors":"Pu Du, Benjamin Wilhite, Costas Kravaris","doi":"10.1002/aic.18906","DOIUrl":null,"url":null,"abstract":"This experimental study investigates fault detection and estimation in a continuous stirred‐tank reactor (CSTR) system under closed‐loop feedback control, including an analysis of different manipulative inputs for temperature regulation. A novel fault diagnosis approach is proposed, combining residual signal analysis and <jats:italic>T</jats:italic><jats:sup>2</jats:sup> statistic for real‐time fault detection and size estimation. The closed‐loop system demonstrated robust setpoint tracking and fault tolerance across a range of fault magnitudes. Residual signals serve as direct estimators of fault size, critical for adaptive control, while the <jats:italic>T</jats:italic><jats:sup>2</jats:sup> statistic enhances reliability by identifying deviations from normal behavior with fault‐confidence thresholds. As a step towards fault‐tolerant control, the proposed methodology lays the groundwork for advanced control strategies that can ensure safe and efficient operation of chemical reactor systems.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model‐based fault diagnosis in closed‐loop safety‐critical chemical reactors: An experimental study\",\"authors\":\"Pu Du, Benjamin Wilhite, Costas Kravaris\",\"doi\":\"10.1002/aic.18906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This experimental study investigates fault detection and estimation in a continuous stirred‐tank reactor (CSTR) system under closed‐loop feedback control, including an analysis of different manipulative inputs for temperature regulation. A novel fault diagnosis approach is proposed, combining residual signal analysis and <jats:italic>T</jats:italic><jats:sup>2</jats:sup> statistic for real‐time fault detection and size estimation. The closed‐loop system demonstrated robust setpoint tracking and fault tolerance across a range of fault magnitudes. Residual signals serve as direct estimators of fault size, critical for adaptive control, while the <jats:italic>T</jats:italic><jats:sup>2</jats:sup> statistic enhances reliability by identifying deviations from normal behavior with fault‐confidence thresholds. As a step towards fault‐tolerant control, the proposed methodology lays the groundwork for advanced control strategies that can ensure safe and efficient operation of chemical reactor systems.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18906\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Model‐based fault diagnosis in closed‐loop safety‐critical chemical reactors: An experimental study
This experimental study investigates fault detection and estimation in a continuous stirred‐tank reactor (CSTR) system under closed‐loop feedback control, including an analysis of different manipulative inputs for temperature regulation. A novel fault diagnosis approach is proposed, combining residual signal analysis and T2 statistic for real‐time fault detection and size estimation. The closed‐loop system demonstrated robust setpoint tracking and fault tolerance across a range of fault magnitudes. Residual signals serve as direct estimators of fault size, critical for adaptive control, while the T2 statistic enhances reliability by identifying deviations from normal behavior with fault‐confidence thresholds. As a step towards fault‐tolerant control, the proposed methodology lays the groundwork for advanced control strategies that can ensure safe and efficient operation of chemical reactor systems.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.