Mhairi Maskew, Shantelle Parrott, Lucien De Voux, Kieran Sharpey-Schafer, Thomas Crompton, Ashley Christopher Govender, Pedro Terrence Pisa, Sydney Rosen
{"title":"对有脱离艾滋病毒护理风险的客户进行分类:南非临床试验数据预测模型的应用。","authors":"Mhairi Maskew, Shantelle Parrott, Lucien De Voux, Kieran Sharpey-Schafer, Thomas Crompton, Ashley Christopher Govender, Pedro Terrence Pisa, Sydney Rosen","doi":"10.2147/RMHP.S510666","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To reach South Africa's targets for HIV treatment and viral suppression, retention on antiretroviral therapy (ART) must increase. Here, we aim to successfully identify ART clients at risk of loss from care prior to disengagement.</p><p><strong>Patients and methods: </strong>We applied a previously developed machine learning and predictive modelling algorithm (PREDICT) to ART client data from SLATE I and II trials. The primary outcome was interruption in treatment (IIT), defined as missing the next scheduled clinic visit by >28 days. We tested two risk triaging approaches: 1) threshold approach classifying individuals into low, moderate, or high risk of IIT; and 2) archetype approach identifying subgroups with characteristics associated with risk of ITT. We report associations between risk category groups and subsequent IIT at the next scheduled visit using crude risk differences and relative risks with 95% confidence intervals.</p><p><strong>Results: </strong>SLATE datasets included 7199 client visits for 1193 clients over ≤14 months of follow-up. The threshold approach consistently and accurately assigned levels of IIT risk for multiple stages of the care cascade. The archetype approach identified several subgroups at increased risk of IIT, including those late to previous appointments, returning after a period of disengagement, living alone or without a treatment supporter. Behavioural elements of the archetypes tended to drive the risk of treatment interruption more consistently than demographics; eg adolescent boys/young men who attended visits on time experienced the lowest rates of treatment interruption (10% PREDICT datasets; 7% SLATE datasets), while adolescent boys/young men returning after previously disengaging had the highest rates of subsequent treatment interruption (31% PREDICT datasets; 40% SLATE datasets).</p><p><strong>Conclusion: </strong>Routinely collected medical record data can be combined with basic demographic and socioeconomic data to assess individual risk of future treatment disengagement. This approach offers an opportunity to prevent disengagement from HIV care, rather than responding only after it has occurred.</p><p><strong>Trial registration: </strong>SLATE I trial: Clinicaltrials.gov NCT02891135, registered September 1, 2016. First participant enrolled March 6, 2017, in South Africa and July 13, 2017, in Kenya. SLATE II trial: Clinicaltrials.gov NCT03315013, registered 19 October 2017. First participant enrolled 14 March 2018.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"18 ","pages":"1601-1619"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091061/pdf/","citationCount":"0","resultStr":"{\"title\":\"Triaging Clients at Risk of Disengagement from HIV Care: Application of a Predictive Model to Clinical Trial Data in South Africa.\",\"authors\":\"Mhairi Maskew, Shantelle Parrott, Lucien De Voux, Kieran Sharpey-Schafer, Thomas Crompton, Ashley Christopher Govender, Pedro Terrence Pisa, Sydney Rosen\",\"doi\":\"10.2147/RMHP.S510666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To reach South Africa's targets for HIV treatment and viral suppression, retention on antiretroviral therapy (ART) must increase. Here, we aim to successfully identify ART clients at risk of loss from care prior to disengagement.</p><p><strong>Patients and methods: </strong>We applied a previously developed machine learning and predictive modelling algorithm (PREDICT) to ART client data from SLATE I and II trials. The primary outcome was interruption in treatment (IIT), defined as missing the next scheduled clinic visit by >28 days. We tested two risk triaging approaches: 1) threshold approach classifying individuals into low, moderate, or high risk of IIT; and 2) archetype approach identifying subgroups with characteristics associated with risk of ITT. We report associations between risk category groups and subsequent IIT at the next scheduled visit using crude risk differences and relative risks with 95% confidence intervals.</p><p><strong>Results: </strong>SLATE datasets included 7199 client visits for 1193 clients over ≤14 months of follow-up. The threshold approach consistently and accurately assigned levels of IIT risk for multiple stages of the care cascade. The archetype approach identified several subgroups at increased risk of IIT, including those late to previous appointments, returning after a period of disengagement, living alone or without a treatment supporter. Behavioural elements of the archetypes tended to drive the risk of treatment interruption more consistently than demographics; eg adolescent boys/young men who attended visits on time experienced the lowest rates of treatment interruption (10% PREDICT datasets; 7% SLATE datasets), while adolescent boys/young men returning after previously disengaging had the highest rates of subsequent treatment interruption (31% PREDICT datasets; 40% SLATE datasets).</p><p><strong>Conclusion: </strong>Routinely collected medical record data can be combined with basic demographic and socioeconomic data to assess individual risk of future treatment disengagement. This approach offers an opportunity to prevent disengagement from HIV care, rather than responding only after it has occurred.</p><p><strong>Trial registration: </strong>SLATE I trial: Clinicaltrials.gov NCT02891135, registered September 1, 2016. First participant enrolled March 6, 2017, in South Africa and July 13, 2017, in Kenya. SLATE II trial: Clinicaltrials.gov NCT03315013, registered 19 October 2017. First participant enrolled 14 March 2018.</p>\",\"PeriodicalId\":56009,\"journal\":{\"name\":\"Risk Management and Healthcare Policy\",\"volume\":\"18 \",\"pages\":\"1601-1619\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091061/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management and Healthcare Policy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/RMHP.S510666\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S510666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Triaging Clients at Risk of Disengagement from HIV Care: Application of a Predictive Model to Clinical Trial Data in South Africa.
Purpose: To reach South Africa's targets for HIV treatment and viral suppression, retention on antiretroviral therapy (ART) must increase. Here, we aim to successfully identify ART clients at risk of loss from care prior to disengagement.
Patients and methods: We applied a previously developed machine learning and predictive modelling algorithm (PREDICT) to ART client data from SLATE I and II trials. The primary outcome was interruption in treatment (IIT), defined as missing the next scheduled clinic visit by >28 days. We tested two risk triaging approaches: 1) threshold approach classifying individuals into low, moderate, or high risk of IIT; and 2) archetype approach identifying subgroups with characteristics associated with risk of ITT. We report associations between risk category groups and subsequent IIT at the next scheduled visit using crude risk differences and relative risks with 95% confidence intervals.
Results: SLATE datasets included 7199 client visits for 1193 clients over ≤14 months of follow-up. The threshold approach consistently and accurately assigned levels of IIT risk for multiple stages of the care cascade. The archetype approach identified several subgroups at increased risk of IIT, including those late to previous appointments, returning after a period of disengagement, living alone or without a treatment supporter. Behavioural elements of the archetypes tended to drive the risk of treatment interruption more consistently than demographics; eg adolescent boys/young men who attended visits on time experienced the lowest rates of treatment interruption (10% PREDICT datasets; 7% SLATE datasets), while adolescent boys/young men returning after previously disengaging had the highest rates of subsequent treatment interruption (31% PREDICT datasets; 40% SLATE datasets).
Conclusion: Routinely collected medical record data can be combined with basic demographic and socioeconomic data to assess individual risk of future treatment disengagement. This approach offers an opportunity to prevent disengagement from HIV care, rather than responding only after it has occurred.
Trial registration: SLATE I trial: Clinicaltrials.gov NCT02891135, registered September 1, 2016. First participant enrolled March 6, 2017, in South Africa and July 13, 2017, in Kenya. SLATE II trial: Clinicaltrials.gov NCT03315013, registered 19 October 2017. First participant enrolled 14 March 2018.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.