Francisco Tenjo-Castaño, Sweta Suman Rout, Sanjay Dey, Guillermo Montoya
{"title":"解锁crispr相关转座子的潜力:从结构到功能洞察。","authors":"Francisco Tenjo-Castaño, Sweta Suman Rout, Sanjay Dey, Guillermo Montoya","doi":"10.1016/j.tig.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of CRISPR-associated transposons: from structural to functional insights.\",\"authors\":\"Francisco Tenjo-Castaño, Sweta Suman Rout, Sanjay Dey, Guillermo Montoya\",\"doi\":\"10.1016/j.tig.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.04.005\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.04.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Unlocking the potential of CRISPR-associated transposons: from structural to functional insights.
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.