可解释的人工智能对房颤卒中风险分层的影响。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-03-22 eCollection Date: 2025-05-01 DOI:10.1093/ehjdh/ztaf019
Raquel Mae Zimmerman, Edgar J Hernandez, Martin Tristani-Firouzi, Mark Yandell, Benjamin A Steinberg
{"title":"可解释的人工智能对房颤卒中风险分层的影响。","authors":"Raquel Mae Zimmerman, Edgar J Hernandez, Martin Tristani-Firouzi, Mark Yandell, Benjamin A Steinberg","doi":"10.1093/ehjdh/ztaf019","DOIUrl":null,"url":null,"abstract":"<p><p>Current risk stratification tools can limit the optimal implementation of new and emerging therapies for patients with heart rhythm disorders. For example, stroke prevention treatments have outpaced means for stroke risk stratification for patients with atrial fibrillation (AF). Artificial intelligence (AI) techniques have shown promise for improving various tasks in cardiovascular medicine. Here, we explain key concepts in AI that are central to using these technologies for better risk stratification, highlighting one approach particularly well suited to the task of portable, personalized risk stratification-probabilistic graphical models (PGMs). Probabilistic graphical models can empower physicians to ask and answer a variety of clinical questions, which we demonstrate using a preliminary model of AF-related stroke risk among 1.6 million patients within the University of Utah Health System. This example also highlights the ability of PGMs to combine social determinants of health and other non-traditional variables with standard clinical and demographic ones to improve personalized risk predictions and address risk factor interactions. When combined with electronic health data, these computational technologies hold great promise to empower personalized, explainable, and equitable risk assessment.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 3","pages":"317-325"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence for stroke risk stratification in atrial fibrillation.\",\"authors\":\"Raquel Mae Zimmerman, Edgar J Hernandez, Martin Tristani-Firouzi, Mark Yandell, Benjamin A Steinberg\",\"doi\":\"10.1093/ehjdh/ztaf019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current risk stratification tools can limit the optimal implementation of new and emerging therapies for patients with heart rhythm disorders. For example, stroke prevention treatments have outpaced means for stroke risk stratification for patients with atrial fibrillation (AF). Artificial intelligence (AI) techniques have shown promise for improving various tasks in cardiovascular medicine. Here, we explain key concepts in AI that are central to using these technologies for better risk stratification, highlighting one approach particularly well suited to the task of portable, personalized risk stratification-probabilistic graphical models (PGMs). Probabilistic graphical models can empower physicians to ask and answer a variety of clinical questions, which we demonstrate using a preliminary model of AF-related stroke risk among 1.6 million patients within the University of Utah Health System. This example also highlights the ability of PGMs to combine social determinants of health and other non-traditional variables with standard clinical and demographic ones to improve personalized risk predictions and address risk factor interactions. When combined with electronic health data, these computational technologies hold great promise to empower personalized, explainable, and equitable risk assessment.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 3\",\"pages\":\"317-325\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目前的风险分层工具可能会限制对心律失常患者的新疗法的最佳实施。例如,卒中预防治疗已经超过了心房颤动(AF)患者卒中风险分层的手段。人工智能(AI)技术已经显示出改善心血管医学各种任务的希望。在这里,我们解释了人工智能中的关键概念,这些概念对于使用这些技术进行更好的风险分层至关重要,并强调了一种特别适合于便携式个性化风险分层任务的方法-概率图形模型(PGMs)。概率图形模型可以使医生能够询问和回答各种临床问题,我们在犹他大学卫生系统的160万患者中使用af相关中风风险的初步模型来证明这一点。这个例子还突出表明,PGMs有能力将健康的社会决定因素和其他非传统变量与标准的临床和人口统计学变量结合起来,以改进个性化的风险预测和处理风险因素的相互作用。当与电子健康数据相结合时,这些计算技术有望实现个性化、可解释和公平的风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable artificial intelligence for stroke risk stratification in atrial fibrillation.

Current risk stratification tools can limit the optimal implementation of new and emerging therapies for patients with heart rhythm disorders. For example, stroke prevention treatments have outpaced means for stroke risk stratification for patients with atrial fibrillation (AF). Artificial intelligence (AI) techniques have shown promise for improving various tasks in cardiovascular medicine. Here, we explain key concepts in AI that are central to using these technologies for better risk stratification, highlighting one approach particularly well suited to the task of portable, personalized risk stratification-probabilistic graphical models (PGMs). Probabilistic graphical models can empower physicians to ask and answer a variety of clinical questions, which we demonstrate using a preliminary model of AF-related stroke risk among 1.6 million patients within the University of Utah Health System. This example also highlights the ability of PGMs to combine social determinants of health and other non-traditional variables with standard clinical and demographic ones to improve personalized risk predictions and address risk factor interactions. When combined with electronic health data, these computational technologies hold great promise to empower personalized, explainable, and equitable risk assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信