人类视觉皮层中的对象知识表征需要与语言系统相连接。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-05-20 eCollection Date: 2025-05-01 DOI:10.1371/journal.pbio.3003161
Bo Liu, Xiaosha Wang, Xiaoying Wang, Yan Li, Yang Han, Jiahui Lu, Hui Zhang, Xiaochun Wang, Yanchao Bi
{"title":"人类视觉皮层中的对象知识表征需要与语言系统相连接。","authors":"Bo Liu, Xiaosha Wang, Xiaoying Wang, Yan Li, Yang Han, Jiahui Lu, Hui Zhang, Xiaochun Wang, Yanchao Bi","doi":"10.1371/journal.pbio.3003161","DOIUrl":null,"url":null,"abstract":"<p><p>How world knowledge is stored in the human brain is a central question in cognitive neuroscience. Object knowledge effects have been commonly observed in higher-order sensory association cortices, with the role of language being highly debated. Using object color as a test case, we investigated whether communication with the language system plays a necessary role in knowledge neural representation in the visual cortex and corresponding behaviors, combining diffusion imaging (measuring white-matter structural integrity), functional MRI (fMRI; measuring functional neural representation of knowledge), and neuropsychological assessments (measuring behavioral integrity) in a group of patients who suffered from stroke (N = 33; 18 with left-hemisphere lesions, 11 with right-hemisphere lesions, and 4 with bilateral lesions). The structural integrity loss of the white-matter connection between the anterior temporal language region and the ventral visual cortex had a significant effect on the neural representation strength of object color knowledge in the ventral visual cortex and on object color knowledge behavior across modalities. These contributions could not be explained by the potential effects of the early visual perception pathway or potential confounding brain or cognitive variables. Our experiments reveal the contribution of the vision-language connection in the ventral occipitotemporal cortex (VOTC) object knowledge neural representation and object knowledge behaviors, highlighting the significance of the language-sensory system interface.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003161"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091770/pdf/","citationCount":"0","resultStr":"{\"title\":\"Object knowledge representation in the human visual cortex requires a connection with the language system.\",\"authors\":\"Bo Liu, Xiaosha Wang, Xiaoying Wang, Yan Li, Yang Han, Jiahui Lu, Hui Zhang, Xiaochun Wang, Yanchao Bi\",\"doi\":\"10.1371/journal.pbio.3003161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How world knowledge is stored in the human brain is a central question in cognitive neuroscience. Object knowledge effects have been commonly observed in higher-order sensory association cortices, with the role of language being highly debated. Using object color as a test case, we investigated whether communication with the language system plays a necessary role in knowledge neural representation in the visual cortex and corresponding behaviors, combining diffusion imaging (measuring white-matter structural integrity), functional MRI (fMRI; measuring functional neural representation of knowledge), and neuropsychological assessments (measuring behavioral integrity) in a group of patients who suffered from stroke (N = 33; 18 with left-hemisphere lesions, 11 with right-hemisphere lesions, and 4 with bilateral lesions). The structural integrity loss of the white-matter connection between the anterior temporal language region and the ventral visual cortex had a significant effect on the neural representation strength of object color knowledge in the ventral visual cortex and on object color knowledge behavior across modalities. These contributions could not be explained by the potential effects of the early visual perception pathway or potential confounding brain or cognitive variables. Our experiments reveal the contribution of the vision-language connection in the ventral occipitotemporal cortex (VOTC) object knowledge neural representation and object knowledge behaviors, highlighting the significance of the language-sensory system interface.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 5\",\"pages\":\"e3003161\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091770/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003161\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003161","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

世界知识如何储存在人脑中是认知神经科学的一个核心问题。客体知识效应通常在高阶感觉关联皮层中观察到,而语言的作用一直备受争议。以物体颜色为测试用例,我们结合扩散成像(测量白质结构完整性)、功能磁共振成像(fMRI;测量知识的功能性神经表征)和神经心理学评估(测量行为完整性)在一组中风患者中(N = 33;左半球病变18例,右半球病变11例,双侧病变4例)。前颞叶语言区与腹侧视觉皮层白质连接的结构完整性缺失对腹侧视觉皮层物体颜色知识的神经表征强度和跨模态的物体颜色知识行为有显著影响。这些贡献不能用早期视觉感知通路的潜在影响或潜在的混淆大脑或认知变量来解释。我们的实验揭示了视觉-语言连接在腹侧枕颞叶皮层(VOTC)对象知识神经表征和对象知识行为中的贡献,突出了语言-感觉系统接口的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object knowledge representation in the human visual cortex requires a connection with the language system.

How world knowledge is stored in the human brain is a central question in cognitive neuroscience. Object knowledge effects have been commonly observed in higher-order sensory association cortices, with the role of language being highly debated. Using object color as a test case, we investigated whether communication with the language system plays a necessary role in knowledge neural representation in the visual cortex and corresponding behaviors, combining diffusion imaging (measuring white-matter structural integrity), functional MRI (fMRI; measuring functional neural representation of knowledge), and neuropsychological assessments (measuring behavioral integrity) in a group of patients who suffered from stroke (N = 33; 18 with left-hemisphere lesions, 11 with right-hemisphere lesions, and 4 with bilateral lesions). The structural integrity loss of the white-matter connection between the anterior temporal language region and the ventral visual cortex had a significant effect on the neural representation strength of object color knowledge in the ventral visual cortex and on object color knowledge behavior across modalities. These contributions could not be explained by the potential effects of the early visual perception pathway or potential confounding brain or cognitive variables. Our experiments reveal the contribution of the vision-language connection in the ventral occipitotemporal cortex (VOTC) object knowledge neural representation and object knowledge behaviors, highlighting the significance of the language-sensory system interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信