{"title":"用于靶向癌症治疗的多功能磁性离子液体-碳纳米角复合物。","authors":"Yun Qi, Eijiro Miyako","doi":"10.1002/smsc.202400640","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing a rational and simplified design for nanoparticles that selectively target and eliminate cancer cells is a crucial aspect of cancer treatment. In this study, a new multifunctional nanocomplex is developed based on a photoexothermic carbon nanohorn comprising the magnetic and anticancer ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate and fluorescent indocyanine green, synthesized through a convenient sonication process. The synthesized nanocomplexes exhibit unique therapeutic, photothermal, magnetic, and fluorescent properties, enabling chemotherapeutic, light-, and magnetic-field-driven cancer theranostics. Furthermore, this nanocomplex demonstrates prolonged water-dispersing stability (7 days), high photothermal conversion efficiency (63%), and remarkable stability under biologically permeable near-infrared laser irradiation. Simple magnetic guidance significantly enhances the accumulation of nanocomplexes at tumor sites, facilitating targeted delivery. In vitro and in vivo studies have demonstrated potent anticancer efficacy, high selective cytotoxicity against cancer cells, and minimal impact on normal tissues. This study represents the first application of magnetic ionic liquids in cancer treatment and provides a valuable platform for advanced nanotheranostics.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 5","pages":"2400640"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Magnetic Ionic Liquid-Carbon Nanohorn Complexes for Targeted Cancer Theranostics.\",\"authors\":\"Yun Qi, Eijiro Miyako\",\"doi\":\"10.1002/smsc.202400640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Establishing a rational and simplified design for nanoparticles that selectively target and eliminate cancer cells is a crucial aspect of cancer treatment. In this study, a new multifunctional nanocomplex is developed based on a photoexothermic carbon nanohorn comprising the magnetic and anticancer ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate and fluorescent indocyanine green, synthesized through a convenient sonication process. The synthesized nanocomplexes exhibit unique therapeutic, photothermal, magnetic, and fluorescent properties, enabling chemotherapeutic, light-, and magnetic-field-driven cancer theranostics. Furthermore, this nanocomplex demonstrates prolonged water-dispersing stability (7 days), high photothermal conversion efficiency (63%), and remarkable stability under biologically permeable near-infrared laser irradiation. Simple magnetic guidance significantly enhances the accumulation of nanocomplexes at tumor sites, facilitating targeted delivery. In vitro and in vivo studies have demonstrated potent anticancer efficacy, high selective cytotoxicity against cancer cells, and minimal impact on normal tissues. This study represents the first application of magnetic ionic liquids in cancer treatment and provides a valuable platform for advanced nanotheranostics.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 5\",\"pages\":\"2400640\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional Magnetic Ionic Liquid-Carbon Nanohorn Complexes for Targeted Cancer Theranostics.
Establishing a rational and simplified design for nanoparticles that selectively target and eliminate cancer cells is a crucial aspect of cancer treatment. In this study, a new multifunctional nanocomplex is developed based on a photoexothermic carbon nanohorn comprising the magnetic and anticancer ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate and fluorescent indocyanine green, synthesized through a convenient sonication process. The synthesized nanocomplexes exhibit unique therapeutic, photothermal, magnetic, and fluorescent properties, enabling chemotherapeutic, light-, and magnetic-field-driven cancer theranostics. Furthermore, this nanocomplex demonstrates prolonged water-dispersing stability (7 days), high photothermal conversion efficiency (63%), and remarkable stability under biologically permeable near-infrared laser irradiation. Simple magnetic guidance significantly enhances the accumulation of nanocomplexes at tumor sites, facilitating targeted delivery. In vitro and in vivo studies have demonstrated potent anticancer efficacy, high selective cytotoxicity against cancer cells, and minimal impact on normal tissues. This study represents the first application of magnetic ionic liquids in cancer treatment and provides a valuable platform for advanced nanotheranostics.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.