一个昼夜行为分析套件,用于复杂行为的日常节奏的实时分类。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Logan J Perry, Gavin E Ratcliff, Arthur Mayo, Blanca E Perez, Larissa Rays Wahba, K L Nikhil, William C Lenzen, Yangyuan Li, Jordan Mar, Isabella Farhy-Tselnicker, Wanhe Li, Jeff R Jones
{"title":"一个昼夜行为分析套件,用于复杂行为的日常节奏的实时分类。","authors":"Logan J Perry, Gavin E Ratcliff, Arthur Mayo, Blanca E Perez, Larissa Rays Wahba, K L Nikhil, William C Lenzen, Yangyuan Li, Jordan Mar, Isabella Farhy-Tselnicker, Wanhe Li, Jeff R Jones","doi":"10.1016/j.crmeth.2025.101050","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term analysis of animal behavior has been limited by reliance on real-time sensors or manual scoring. Existing machine learning tools can automate analysis but often fail under variable conditions or ignore temporal dynamics. We developed a scalable pipeline for continuous, real-time acquisition and classification of behavior across multiple animals and conditions. At its core is a self-supervised vision model paired with a lightweight classifier that enables robust performance with minimal manual labeling. Our system achieves expert-level performance and can operate indefinitely across diverse recording environments. As a proof-of-concept, we recorded 97 mice over 2 weeks to test whether sex hormones influence circadian behaviors. We discovered sex- and estrogen-dependent rhythms in behaviors such as digging and nesting. We introduce the Circadian Behavioral Analysis Suite (CBAS), a modular toolkit that supports high-throughput, long-timescale behavioral phenotyping, allowing for the temporal analysis of behaviors that were previously difficult or impossible to observe.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 5","pages":"101050"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors.\",\"authors\":\"Logan J Perry, Gavin E Ratcliff, Arthur Mayo, Blanca E Perez, Larissa Rays Wahba, K L Nikhil, William C Lenzen, Yangyuan Li, Jordan Mar, Isabella Farhy-Tselnicker, Wanhe Li, Jeff R Jones\",\"doi\":\"10.1016/j.crmeth.2025.101050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term analysis of animal behavior has been limited by reliance on real-time sensors or manual scoring. Existing machine learning tools can automate analysis but often fail under variable conditions or ignore temporal dynamics. We developed a scalable pipeline for continuous, real-time acquisition and classification of behavior across multiple animals and conditions. At its core is a self-supervised vision model paired with a lightweight classifier that enables robust performance with minimal manual labeling. Our system achieves expert-level performance and can operate indefinitely across diverse recording environments. As a proof-of-concept, we recorded 97 mice over 2 weeks to test whether sex hormones influence circadian behaviors. We discovered sex- and estrogen-dependent rhythms in behaviors such as digging and nesting. We introduce the Circadian Behavioral Analysis Suite (CBAS), a modular toolkit that supports high-throughput, long-timescale behavioral phenotyping, allowing for the temporal analysis of behaviors that were previously difficult or impossible to observe.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\"5 5\",\"pages\":\"101050\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对动物行为的长期分析一直受到实时传感器或人工评分的限制。现有的机器学习工具可以自动分析,但往往在可变条件下失败或忽略时间动态。我们开发了一个可扩展的管道,用于跨多种动物和条件的连续、实时采集和行为分类。它的核心是一个自我监督的视觉模型,搭配一个轻量级的分类器,以最少的人工标记实现鲁棒性能。我们的系统达到了专家级的性能,可以在不同的记录环境中无限期地运行。作为概念验证,我们在两周内记录了97只小鼠,以测试性激素是否影响昼夜行为。我们在挖掘和筑巢等行为中发现了依赖性和雌激素的节律。我们介绍了昼夜行为分析套件(CBAS),这是一个模块化工具包,支持高通量,长时间尺度的行为表型,允许对以前难以或不可能观察到的行为进行时间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors.

Long-term analysis of animal behavior has been limited by reliance on real-time sensors or manual scoring. Existing machine learning tools can automate analysis but often fail under variable conditions or ignore temporal dynamics. We developed a scalable pipeline for continuous, real-time acquisition and classification of behavior across multiple animals and conditions. At its core is a self-supervised vision model paired with a lightweight classifier that enables robust performance with minimal manual labeling. Our system achieves expert-level performance and can operate indefinitely across diverse recording environments. As a proof-of-concept, we recorded 97 mice over 2 weeks to test whether sex hormones influence circadian behaviors. We discovered sex- and estrogen-dependent rhythms in behaviors such as digging and nesting. We introduce the Circadian Behavioral Analysis Suite (CBAS), a modular toolkit that supports high-throughput, long-timescale behavioral phenotyping, allowing for the temporal analysis of behaviors that were previously difficult or impossible to observe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信