Paul H Yi, Preetham Bachina, Beepul Bharti, Sean P Garin, Adway Kanhere, Pranav Kulkarni, David Li, Vishwa S Parekh, Samantha M Santomartino, Linda Moy, Jeremias Sulam
{"title":"放射学中人工智能算法偏差评估的陷阱和最佳实践。","authors":"Paul H Yi, Preetham Bachina, Beepul Bharti, Sean P Garin, Adway Kanhere, Pranav Kulkarni, David Li, Vishwa S Parekh, Samantha M Santomartino, Linda Moy, Jeremias Sulam","doi":"10.1148/radiol.241674","DOIUrl":null,"url":null,"abstract":"<p><p>Despite growing awareness of problems with fairness in artificial intelligence (AI) models in radiology, evaluation of algorithmic biases, or AI biases, remains challenging due to various complexities. These include incomplete reporting of demographic information in medical imaging datasets, variability in definitions of demographic categories, and inconsistent statistical definitions of bias. To guide the appropriate evaluation of AI biases in radiology, this article summarizes the pitfalls in the evaluation and measurement of algorithmic biases. These pitfalls span the spectrum from the technical (eg, how different statistical definitions of bias impact conclusions about whether an AI model is biased) to those associated with social context (eg, how different conventions of race and ethnicity impact identification or masking of biases). Actionable best practices and future directions to avoid these pitfalls are summarized across three key areas: <i>(a)</i> medical imaging datasets, <i>(b)</i> demographic definitions, and <i>(c)</i> statistical evaluations of bias. Although AI bias in radiology has been broadly reviewed in the recent literature, this article focuses specifically on underrecognized potential pitfalls related to the three key areas. By providing awareness of these pitfalls along with actionable practices to avoid them, exciting AI technologies can be used in radiology for the good of all people.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"315 2","pages":"e241674"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology.\",\"authors\":\"Paul H Yi, Preetham Bachina, Beepul Bharti, Sean P Garin, Adway Kanhere, Pranav Kulkarni, David Li, Vishwa S Parekh, Samantha M Santomartino, Linda Moy, Jeremias Sulam\",\"doi\":\"10.1148/radiol.241674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite growing awareness of problems with fairness in artificial intelligence (AI) models in radiology, evaluation of algorithmic biases, or AI biases, remains challenging due to various complexities. These include incomplete reporting of demographic information in medical imaging datasets, variability in definitions of demographic categories, and inconsistent statistical definitions of bias. To guide the appropriate evaluation of AI biases in radiology, this article summarizes the pitfalls in the evaluation and measurement of algorithmic biases. These pitfalls span the spectrum from the technical (eg, how different statistical definitions of bias impact conclusions about whether an AI model is biased) to those associated with social context (eg, how different conventions of race and ethnicity impact identification or masking of biases). Actionable best practices and future directions to avoid these pitfalls are summarized across three key areas: <i>(a)</i> medical imaging datasets, <i>(b)</i> demographic definitions, and <i>(c)</i> statistical evaluations of bias. Although AI bias in radiology has been broadly reviewed in the recent literature, this article focuses specifically on underrecognized potential pitfalls related to the three key areas. By providing awareness of these pitfalls along with actionable practices to avoid them, exciting AI technologies can be used in radiology for the good of all people.</p>\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":\"315 2\",\"pages\":\"e241674\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.241674\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.241674","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology.
Despite growing awareness of problems with fairness in artificial intelligence (AI) models in radiology, evaluation of algorithmic biases, or AI biases, remains challenging due to various complexities. These include incomplete reporting of demographic information in medical imaging datasets, variability in definitions of demographic categories, and inconsistent statistical definitions of bias. To guide the appropriate evaluation of AI biases in radiology, this article summarizes the pitfalls in the evaluation and measurement of algorithmic biases. These pitfalls span the spectrum from the technical (eg, how different statistical definitions of bias impact conclusions about whether an AI model is biased) to those associated with social context (eg, how different conventions of race and ethnicity impact identification or masking of biases). Actionable best practices and future directions to avoid these pitfalls are summarized across three key areas: (a) medical imaging datasets, (b) demographic definitions, and (c) statistical evaluations of bias. Although AI bias in radiology has been broadly reviewed in the recent literature, this article focuses specifically on underrecognized potential pitfalls related to the three key areas. By providing awareness of these pitfalls along with actionable practices to avoid them, exciting AI technologies can be used in radiology for the good of all people.
期刊介绍:
Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies.
Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.