Shota Hodono, Chia-Yin Wu, Jin Jin, Jonathan R Polimeni, Martijn A Cloos
{"title":"使用PINS脉冲来饱和3和7 T时fMRI数据的流入效应。","authors":"Shota Hodono, Chia-Yin Wu, Jin Jin, Jonathan R Polimeni, Martijn A Cloos","doi":"10.1002/mrm.30584","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To suppress inflow effects by saturating the magnetization within slice gaps.</p><p><strong>Methods: </strong>Power independent of number of slices (PINS) pulses was designed to saturate the magnetization in all slice gaps at once. The PINS saturation module was played before every excitation. The saturation and excitation profiles were validated in simulation and phantom experiments. To demonstrate the efficacy of the method to suppress inflow, experiments were performed using a flow phantom. As an example use-case, fMRI experiments with and without PINS inflow saturation were performed at 3 T and 7 T.</p><p><strong>Results: </strong>Simulations and phantom experiments showed that the PINS saturation module successfully saturated the magnetization in the slice gaps without degrading the slice profile of the imaging slices. Flow phantom experiments showed that the PINS saturation module suppresses through-plane inflow better than no-gap acquisitions. In vivo fMRI experiments demonstrated that the PINS saturation module can be used to modulate the spin-echo BOLD signal. At 3 T application of PINS pulses to saturate the magnetization in the slice gaps resulted in approximately 25% fewer activated voxels (PINS-ON vs. PINS-OFF). Interestingly, at 7 T the activation patterns remained more similar and only approximately 10% fewer activated voxels were detected. The observed difference between 3 and 7 T may be linked to the relative shortening of the blood T<sub>2</sub>.</p><p><strong>Conclusion: </strong>Using PINS pulses, inflow effects from slice gaps were effectively and efficiently saturated. The proposed PINS saturation module can be used to further study the contribution of inflow effects in fMRI data.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using PINS pulses to saturate inflow effects on fMRI data at 3 and 7 T.\",\"authors\":\"Shota Hodono, Chia-Yin Wu, Jin Jin, Jonathan R Polimeni, Martijn A Cloos\",\"doi\":\"10.1002/mrm.30584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To suppress inflow effects by saturating the magnetization within slice gaps.</p><p><strong>Methods: </strong>Power independent of number of slices (PINS) pulses was designed to saturate the magnetization in all slice gaps at once. The PINS saturation module was played before every excitation. The saturation and excitation profiles were validated in simulation and phantom experiments. To demonstrate the efficacy of the method to suppress inflow, experiments were performed using a flow phantom. As an example use-case, fMRI experiments with and without PINS inflow saturation were performed at 3 T and 7 T.</p><p><strong>Results: </strong>Simulations and phantom experiments showed that the PINS saturation module successfully saturated the magnetization in the slice gaps without degrading the slice profile of the imaging slices. Flow phantom experiments showed that the PINS saturation module suppresses through-plane inflow better than no-gap acquisitions. In vivo fMRI experiments demonstrated that the PINS saturation module can be used to modulate the spin-echo BOLD signal. At 3 T application of PINS pulses to saturate the magnetization in the slice gaps resulted in approximately 25% fewer activated voxels (PINS-ON vs. PINS-OFF). Interestingly, at 7 T the activation patterns remained more similar and only approximately 10% fewer activated voxels were detected. The observed difference between 3 and 7 T may be linked to the relative shortening of the blood T<sub>2</sub>.</p><p><strong>Conclusion: </strong>Using PINS pulses, inflow effects from slice gaps were effectively and efficiently saturated. The proposed PINS saturation module can be used to further study the contribution of inflow effects in fMRI data.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30584\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30584","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Using PINS pulses to saturate inflow effects on fMRI data at 3 and 7 T.
Purpose: To suppress inflow effects by saturating the magnetization within slice gaps.
Methods: Power independent of number of slices (PINS) pulses was designed to saturate the magnetization in all slice gaps at once. The PINS saturation module was played before every excitation. The saturation and excitation profiles were validated in simulation and phantom experiments. To demonstrate the efficacy of the method to suppress inflow, experiments were performed using a flow phantom. As an example use-case, fMRI experiments with and without PINS inflow saturation were performed at 3 T and 7 T.
Results: Simulations and phantom experiments showed that the PINS saturation module successfully saturated the magnetization in the slice gaps without degrading the slice profile of the imaging slices. Flow phantom experiments showed that the PINS saturation module suppresses through-plane inflow better than no-gap acquisitions. In vivo fMRI experiments demonstrated that the PINS saturation module can be used to modulate the spin-echo BOLD signal. At 3 T application of PINS pulses to saturate the magnetization in the slice gaps resulted in approximately 25% fewer activated voxels (PINS-ON vs. PINS-OFF). Interestingly, at 7 T the activation patterns remained more similar and only approximately 10% fewer activated voxels were detected. The observed difference between 3 and 7 T may be linked to the relative shortening of the blood T2.
Conclusion: Using PINS pulses, inflow effects from slice gaps were effectively and efficiently saturated. The proposed PINS saturation module can be used to further study the contribution of inflow effects in fMRI data.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.