基于超声图像的深度学习放射组学图鉴别良性和恶性不确定细胞学(Bethesda III)甲状腺结节:回顾性研究。

IF 1.2 4区 医学 Q3 ACOUSTICS
Lichang Zhong, Lin Shi, Weimei Li, Liang Zhou, Kui Wang, Liping Gu
{"title":"基于超声图像的深度学习放射组学图鉴别良性和恶性不确定细胞学(Bethesda III)甲状腺结节:回顾性研究。","authors":"Lichang Zhong, Lin Shi, Weimei Li, Liang Zhou, Kui Wang, Liping Gu","doi":"10.1002/jcu.24058","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III).</p><p><strong>Materials and methods: </strong>Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed.</p><p><strong>Results: </strong>The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively.</p><p><strong>Conclusion: </strong>The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).</p>","PeriodicalId":15386,"journal":{"name":"Journal of Clinical Ultrasound","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.\",\"authors\":\"Lichang Zhong, Lin Shi, Weimei Li, Liang Zhou, Kui Wang, Liping Gu\",\"doi\":\"10.1002/jcu.24058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale and objectives: </strong>Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III).</p><p><strong>Materials and methods: </strong>Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed.</p><p><strong>Results: </strong>The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively.</p><p><strong>Conclusion: </strong>The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).</p>\",\"PeriodicalId\":15386,\"journal\":{\"name\":\"Journal of Clinical Ultrasound\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Ultrasound\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcu.24058\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Ultrasound","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcu.24058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

基本原理和目标:我们的目标是开发和验证基于术前超声图像和临床特征的深度学习放射组学图(DLRN),用于预测细胞学不确定的甲状腺结节的恶性肿瘤(Bethesda III)。材料与方法:2017年6月至2022年6月,我们对我院194例手术确诊的不确定细胞学(Bethesda III)患者进行回顾性研究。训练组和内部验证组分别由155例和39例患者组成,比例为7:3。为了便于外部验证,我们从剩下的两个医疗中心各选择了80名患者。利用术前超声数据,我们获得了包括深度学习和人工放射学特征的成像标记。在特征选择后,我们建立了一个综合诊断模型来评估Bethesda III良恶性病例的预测价值。系统评估模型的诊断准确性、校准和临床适用性。结果表明,该预测模型综合了从预训练的Resnet34网络中提取的512个DTL特征、超声放射组学和临床特征,在区分良恶性不确定甲状腺结节方面表现出优异的稳定性(Bethesda Class III)。在验证集中,AUC为0.92 (95% CI: 0.831-1.000),准确度、灵敏度、特异性、精密度和召回率分别为0.897、0.882、0.909、0.882和0.882。结论:基于深度迁移学习、超声放射组学特征和临床特征的综合多维数据模型可有效区分良恶性不确定甲状腺结节(Bethesda III类),为不确定甲状腺结节(Bethesda III类)患者的治疗选择提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.

Rationale and objectives: Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III).

Materials and methods: Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed.

Results: The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively.

Conclusion: The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
248
审稿时长
6 months
期刊介绍: The Journal of Clinical Ultrasound (JCU) is an international journal dedicated to the worldwide dissemination of scientific information on diagnostic and therapeutic applications of medical sonography. The scope of the journal includes--but is not limited to--the following areas: sonography of the gastrointestinal tract, genitourinary tract, vascular system, nervous system, head and neck, chest, breast, musculoskeletal system, and other superficial structures; Doppler applications; obstetric and pediatric applications; and interventional sonography. Studies comparing sonography with other imaging modalities are encouraged, as are studies evaluating the economic impact of sonography. Also within the journal''s scope are innovations and improvements in instrumentation and examination techniques and the use of contrast agents. JCU publishes original research articles, case reports, pictorial essays, technical notes, and letters to the editor. The journal is also dedicated to being an educational resource for its readers, through the publication of review articles and various scientific contributions from members of the editorial board and other world-renowned experts in sonography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信