{"title":"纤锌矿局域网异质结构工程。","authors":"A J E Rowberg, S Mu, C G Van de Walle","doi":"10.1063/5.0255815","DOIUrl":null,"url":null,"abstract":"<p><p>Wurtzite LaN (wz-LaN) is a semiconducting nitride with favorable piezoelectric and ferroelectric properties, making it promising for applications in electronics. We use first-principles density functional theory with a hybrid functional to investigate several features that are key for its use in heterostructures. First, for the purposes of growing wz-LaN on a substrate or designing a heterostructure, we show that it can be lattice-matched with a number of cubic materials along their [111] axes. We also evaluate the bound charge at such interfaces, taking into account both the polarization discontinuity and the piezoelectric polarization due to pseudomorphic strain. Second, we investigate band alignments and assess the results for interfaces with zincblende-, rocksalt-, and perovskite-structure compounds, along with chemically similar wurtzite and rocksalt nitrides. Our results provide guidance for the development of electronic devices based on wz-LaN.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterostructure engineering for wurtzite LaN.\",\"authors\":\"A J E Rowberg, S Mu, C G Van de Walle\",\"doi\":\"10.1063/5.0255815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wurtzite LaN (wz-LaN) is a semiconducting nitride with favorable piezoelectric and ferroelectric properties, making it promising for applications in electronics. We use first-principles density functional theory with a hybrid functional to investigate several features that are key for its use in heterostructures. First, for the purposes of growing wz-LaN on a substrate or designing a heterostructure, we show that it can be lattice-matched with a number of cubic materials along their [111] axes. We also evaluate the bound charge at such interfaces, taking into account both the polarization discontinuity and the piezoelectric polarization due to pseudomorphic strain. Second, we investigate band alignments and assess the results for interfaces with zincblende-, rocksalt-, and perovskite-structure compounds, along with chemically similar wurtzite and rocksalt nitrides. Our results provide guidance for the development of electronic devices based on wz-LaN.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0255815\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0255815","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wurtzite LaN (wz-LaN) is a semiconducting nitride with favorable piezoelectric and ferroelectric properties, making it promising for applications in electronics. We use first-principles density functional theory with a hybrid functional to investigate several features that are key for its use in heterostructures. First, for the purposes of growing wz-LaN on a substrate or designing a heterostructure, we show that it can be lattice-matched with a number of cubic materials along their [111] axes. We also evaluate the bound charge at such interfaces, taking into account both the polarization discontinuity and the piezoelectric polarization due to pseudomorphic strain. Second, we investigate band alignments and assess the results for interfaces with zincblende-, rocksalt-, and perovskite-structure compounds, along with chemically similar wurtzite and rocksalt nitrides. Our results provide guidance for the development of electronic devices based on wz-LaN.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.