原卟啉原IX氧化酶(PPO)抑制作物抗除草剂的生物学和农艺联系。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Farman Ali, Aliya Fazal, Zeyu Qiu, Yuwen Yang, Baolong Zhang
{"title":"原卟啉原IX氧化酶(PPO)抑制作物抗除草剂的生物学和农艺联系。","authors":"Farman Ali, Aliya Fazal, Zeyu Qiu, Yuwen Yang, Baolong Zhang","doi":"10.1093/jxb/eraf220","DOIUrl":null,"url":null,"abstract":"<p><p>The repeated use of a single herbicide over many years results in the emergence of resistant weeds, posing a significant danger to food security. Current attempts to prevent herbicide-resistant weeds from evolving and spreading rely mostly on the creation of genetically engineered herbicide-resistant crops and the implementation of herbicide rotation strategies with varied modes of action. In recent years, protoporphyrinogen oxidase (PPO)-inhibiting herbicides have gained popularity for weed management in fields as a result of the slow evolution of PPO-inhibitor resistance and the widespread emergence of weed resistance to acetolactate synthase-inhibitor and glyphosate. The slowly emerging resistance to PPO herbicides enables long-term weed control and ensures the efficiency of PPO inhibitors in managing herbicide-resistant weeds. Recognizing its importance for food security, this review explores innovative strategies for developing crops resistant to PPO-inhibiting herbicides. The review in particular attempts to provide a more detailed explanation of strategies including conventional tissue culture, prokaryotic, amino acid substitution, Fe-chelatase, and circadian clock-controlled gene regulation. All of which contributes to our understanding of how these strategies maintain sufficient PPO enzymatic activity while moderating the herbicide's inhibitory effects and supporting the cells' continued growth and survival under herbicide application.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Biological and Agronomic Nexus Behind Protoporphyrinogen IX Oxidase (PPO)-Inhibiting Herbicide Resistance in Crops.\",\"authors\":\"Farman Ali, Aliya Fazal, Zeyu Qiu, Yuwen Yang, Baolong Zhang\",\"doi\":\"10.1093/jxb/eraf220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The repeated use of a single herbicide over many years results in the emergence of resistant weeds, posing a significant danger to food security. Current attempts to prevent herbicide-resistant weeds from evolving and spreading rely mostly on the creation of genetically engineered herbicide-resistant crops and the implementation of herbicide rotation strategies with varied modes of action. In recent years, protoporphyrinogen oxidase (PPO)-inhibiting herbicides have gained popularity for weed management in fields as a result of the slow evolution of PPO-inhibitor resistance and the widespread emergence of weed resistance to acetolactate synthase-inhibitor and glyphosate. The slowly emerging resistance to PPO herbicides enables long-term weed control and ensures the efficiency of PPO inhibitors in managing herbicide-resistant weeds. Recognizing its importance for food security, this review explores innovative strategies for developing crops resistant to PPO-inhibiting herbicides. The review in particular attempts to provide a more detailed explanation of strategies including conventional tissue culture, prokaryotic, amino acid substitution, Fe-chelatase, and circadian clock-controlled gene regulation. All of which contributes to our understanding of how these strategies maintain sufficient PPO enzymatic activity while moderating the herbicide's inhibitory effects and supporting the cells' continued growth and survival under herbicide application.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf220\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多年反复使用一种除草剂会产生抗药性杂草,对粮食安全构成重大威胁。目前防止抗除草剂杂草进化和蔓延的尝试主要依靠转基因抗除草剂作物的创造和实施具有不同作用模式的除草剂轮作策略。近年来,由于原卟啉原氧化酶(PPO)抑制剂的抗性进化缓慢,以及杂草对乙酰乳酸合酶抑制剂和草甘膦的抗性广泛出现,PPO抑制剂除草剂在田间杂草管理中得到了广泛的应用。对PPO除草剂缓慢出现的抗性使长期杂草控制成为可能,并确保PPO抑制剂在管理抗除草剂杂草方面的效率。认识到其对粮食安全的重要性,本文探讨了开发抗ppo除草剂作物的创新策略。这篇综述特别试图提供更详细的解释策略,包括常规组织培养、原核、氨基酸替代、铁螯合酶和生物钟控制的基因调控。所有这些都有助于我们理解这些策略如何保持足够的PPO酶活性,同时调节除草剂的抑制作用,并支持除草剂施用下细胞的持续生长和存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Biological and Agronomic Nexus Behind Protoporphyrinogen IX Oxidase (PPO)-Inhibiting Herbicide Resistance in Crops.

The repeated use of a single herbicide over many years results in the emergence of resistant weeds, posing a significant danger to food security. Current attempts to prevent herbicide-resistant weeds from evolving and spreading rely mostly on the creation of genetically engineered herbicide-resistant crops and the implementation of herbicide rotation strategies with varied modes of action. In recent years, protoporphyrinogen oxidase (PPO)-inhibiting herbicides have gained popularity for weed management in fields as a result of the slow evolution of PPO-inhibitor resistance and the widespread emergence of weed resistance to acetolactate synthase-inhibitor and glyphosate. The slowly emerging resistance to PPO herbicides enables long-term weed control and ensures the efficiency of PPO inhibitors in managing herbicide-resistant weeds. Recognizing its importance for food security, this review explores innovative strategies for developing crops resistant to PPO-inhibiting herbicides. The review in particular attempts to provide a more detailed explanation of strategies including conventional tissue culture, prokaryotic, amino acid substitution, Fe-chelatase, and circadian clock-controlled gene regulation. All of which contributes to our understanding of how these strategies maintain sufficient PPO enzymatic activity while moderating the herbicide's inhibitory effects and supporting the cells' continued growth and survival under herbicide application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信