{"title":"广谱Mpro抑制剂的鉴定:重点关注高风险冠状病毒和保守相互作用","authors":"Man Liu, Li Zhao, Xupeng Huang, Zhenhao Tang, Yihang Zhong, Mengrong Yan, Shun Liu, Shunjing Wang, Zeyun Sun, Zixuan Rao, Linyi Yu, Yuying Fang, Wei Zhang, Hongbo Zhang, Wei Peng","doi":"10.1080/14756366.2025.2503961","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic underscores the urgent need to develop broad-spectrum antivirals against coronaviruses (CoVs) to prepare for future outbreaks. In this study, we presented a systematic approach to developing broad-spectrum M<sup>pro</sup> inhibitors, with a focus on high-risk CoVs. We optimised <b>S-217622</b> as a lead compound, with the goal of enhancing conserved interactions within the S1, S2, and S3/S4 pockets of M<sup>pro</sup>, leading to significantly improved inhibitory potency against representative CoVs. Compound <b>25</b> exhibited submicromolar activity across all ten CoVs, with IC<sub>50</sub> values below 0.1 μM for six of them. The X-ray co-crystal structure of SARS-CoV-2 M<sup>pro</sup> in complex with compound <b>25</b> revealed the structural basis of conserved interactions contributing to its broad-spectrum activity. This study demonstrates the feasibility of reinforcing conserved interactions to develop M<sup>pro</sup> inhibitors with broad-spectrum activity and provides valuable strategies for combating future pandemics caused by unknown CoVs.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2503961"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of broad-spectrum M<sup>pro</sup> inhibitors: a focus on high-risk coronaviruses and conserved interactions.\",\"authors\":\"Man Liu, Li Zhao, Xupeng Huang, Zhenhao Tang, Yihang Zhong, Mengrong Yan, Shun Liu, Shunjing Wang, Zeyun Sun, Zixuan Rao, Linyi Yu, Yuying Fang, Wei Zhang, Hongbo Zhang, Wei Peng\",\"doi\":\"10.1080/14756366.2025.2503961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic underscores the urgent need to develop broad-spectrum antivirals against coronaviruses (CoVs) to prepare for future outbreaks. In this study, we presented a systematic approach to developing broad-spectrum M<sup>pro</sup> inhibitors, with a focus on high-risk CoVs. We optimised <b>S-217622</b> as a lead compound, with the goal of enhancing conserved interactions within the S1, S2, and S3/S4 pockets of M<sup>pro</sup>, leading to significantly improved inhibitory potency against representative CoVs. Compound <b>25</b> exhibited submicromolar activity across all ten CoVs, with IC<sub>50</sub> values below 0.1 μM for six of them. The X-ray co-crystal structure of SARS-CoV-2 M<sup>pro</sup> in complex with compound <b>25</b> revealed the structural basis of conserved interactions contributing to its broad-spectrum activity. This study demonstrates the feasibility of reinforcing conserved interactions to develop M<sup>pro</sup> inhibitors with broad-spectrum activity and provides valuable strategies for combating future pandemics caused by unknown CoVs.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":\"40 1\",\"pages\":\"2503961\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2025.2503961\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2503961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of broad-spectrum Mpro inhibitors: a focus on high-risk coronaviruses and conserved interactions.
The COVID-19 pandemic underscores the urgent need to develop broad-spectrum antivirals against coronaviruses (CoVs) to prepare for future outbreaks. In this study, we presented a systematic approach to developing broad-spectrum Mpro inhibitors, with a focus on high-risk CoVs. We optimised S-217622 as a lead compound, with the goal of enhancing conserved interactions within the S1, S2, and S3/S4 pockets of Mpro, leading to significantly improved inhibitory potency against representative CoVs. Compound 25 exhibited submicromolar activity across all ten CoVs, with IC50 values below 0.1 μM for six of them. The X-ray co-crystal structure of SARS-CoV-2 Mpro in complex with compound 25 revealed the structural basis of conserved interactions contributing to its broad-spectrum activity. This study demonstrates the feasibility of reinforcing conserved interactions to develop Mpro inhibitors with broad-spectrum activity and provides valuable strategies for combating future pandemics caused by unknown CoVs.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.