{"title":"二维日冕分形:修正逆度指数、信息熵对比分析及光谱特性预测建模。","authors":"A R Abul Kalaam, A Berin Greeni","doi":"10.3389/fchem.2025.1588942","DOIUrl":null,"url":null,"abstract":"<p><p>Topological characterization through graph-theoretical methods translates chemical and structural data into quantitative values that represent the molecular system. Our research explores the use of topological indices to study fractal structures. Molecular fractals are complex geometric configurations that exhibit self-similarity at different levels and systematically formed by repeating a fundamental unit. This study focuses on coronene-based molecular fractals, where coronene, a benzenoid molecule with a symmetrical graphite-like structure, finds applications in organic semiconductors, sensors, and molecular electronics, due to its unique electronic and optical properties. Additionally, information entropy is employed to evaluate and compare the structural complexities of coronene fractals. Spectra-based energetic properties such as total <math><mrow><mi>π</mi></mrow> </math> -electron energy, HOMO-LUMO energy gaps, spectral diameter, delocalization and resonance energies are calculated to assess their kinetic and thermodynamic stability. Furthermore, predictive models are provided for estimating spectral characteristics across higher-dimensional coronene fractal structures.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1588942"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional coronene fractals: modified reverse degree indices, comparative analysis of information entropy and predictive modeling of spectral properties.\",\"authors\":\"A R Abul Kalaam, A Berin Greeni\",\"doi\":\"10.3389/fchem.2025.1588942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topological characterization through graph-theoretical methods translates chemical and structural data into quantitative values that represent the molecular system. Our research explores the use of topological indices to study fractal structures. Molecular fractals are complex geometric configurations that exhibit self-similarity at different levels and systematically formed by repeating a fundamental unit. This study focuses on coronene-based molecular fractals, where coronene, a benzenoid molecule with a symmetrical graphite-like structure, finds applications in organic semiconductors, sensors, and molecular electronics, due to its unique electronic and optical properties. Additionally, information entropy is employed to evaluate and compare the structural complexities of coronene fractals. Spectra-based energetic properties such as total <math><mrow><mi>π</mi></mrow> </math> -electron energy, HOMO-LUMO energy gaps, spectral diameter, delocalization and resonance energies are calculated to assess their kinetic and thermodynamic stability. Furthermore, predictive models are provided for estimating spectral characteristics across higher-dimensional coronene fractal structures.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"13 \",\"pages\":\"1588942\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2025.1588942\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1588942","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-dimensional coronene fractals: modified reverse degree indices, comparative analysis of information entropy and predictive modeling of spectral properties.
Topological characterization through graph-theoretical methods translates chemical and structural data into quantitative values that represent the molecular system. Our research explores the use of topological indices to study fractal structures. Molecular fractals are complex geometric configurations that exhibit self-similarity at different levels and systematically formed by repeating a fundamental unit. This study focuses on coronene-based molecular fractals, where coronene, a benzenoid molecule with a symmetrical graphite-like structure, finds applications in organic semiconductors, sensors, and molecular electronics, due to its unique electronic and optical properties. Additionally, information entropy is employed to evaluate and compare the structural complexities of coronene fractals. Spectra-based energetic properties such as total -electron energy, HOMO-LUMO energy gaps, spectral diameter, delocalization and resonance energies are calculated to assess their kinetic and thermodynamic stability. Furthermore, predictive models are provided for estimating spectral characteristics across higher-dimensional coronene fractal structures.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.