calbindin D-28K神经元性别差异的出现及calbindin D-28K在小鼠视前区聚类神经元中的作用。

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Ryoma Koiso, Chihiro Kushida, Moeko Kanaya, Shinji Tsukahara
{"title":"calbindin D-28K神经元性别差异的出现及calbindin D-28K在小鼠视前区聚类神经元中的作用。","authors":"Ryoma Koiso, Chihiro Kushida, Moeko Kanaya, Shinji Tsukahara","doi":"10.1007/s00441-025-03981-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons expressing Calb1 that encodes calbindin D-28K (Calb), a calcium-binding protein, are significant components of the sexually dimorphic nucleus (SDN) of the preoptic area in mice. Calb is therefore used as a marker to study the SDN. The number of Calb neurons in the SDN is greater in males than in females, and this sex difference emerges before puberty. However, the timing of emergence of this difference and the role of Calb1 in the SDN remain unclear. In this study, we investigated when the sex difference in Calb neurons appears and whether Calb1 is required for organizing the SDN. Profiling the temporal changes in Calb neurons revealed that these neurons dramatically increased in the SDN during postnatal days 15 to 20 in males but not in females, resulting in a significant difference between sexes. However, the Calb1 mRNA in the SDN remained unchanged during the late postnatal period and did not differ between sexes. Calb1 knockdown (KD) was performed by injecting an adeno-associated virus vector into the preoptic area of neonatal mice. The analysis of postnatal Calb1-KD mice revealed that Calb1 KD reduced not only Calb1 expression but also the number of neurons comprising the SDN. These findings suggest that compared with the female SDN, more Calb neurons migrate to and are incorporated into the male SDN, thereby yielding the sex difference in the number of Calb neurons at the late postnatal period, and that Calb1 plays a significant role in clustering neurons in the SDN.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of the sex difference in calbindin D-28K neurons and the role of calbindin D-28K in clustering neurons of the preoptic area in mice.\",\"authors\":\"Ryoma Koiso, Chihiro Kushida, Moeko Kanaya, Shinji Tsukahara\",\"doi\":\"10.1007/s00441-025-03981-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurons expressing Calb1 that encodes calbindin D-28K (Calb), a calcium-binding protein, are significant components of the sexually dimorphic nucleus (SDN) of the preoptic area in mice. Calb is therefore used as a marker to study the SDN. The number of Calb neurons in the SDN is greater in males than in females, and this sex difference emerges before puberty. However, the timing of emergence of this difference and the role of Calb1 in the SDN remain unclear. In this study, we investigated when the sex difference in Calb neurons appears and whether Calb1 is required for organizing the SDN. Profiling the temporal changes in Calb neurons revealed that these neurons dramatically increased in the SDN during postnatal days 15 to 20 in males but not in females, resulting in a significant difference between sexes. However, the Calb1 mRNA in the SDN remained unchanged during the late postnatal period and did not differ between sexes. Calb1 knockdown (KD) was performed by injecting an adeno-associated virus vector into the preoptic area of neonatal mice. The analysis of postnatal Calb1-KD mice revealed that Calb1 KD reduced not only Calb1 expression but also the number of neurons comprising the SDN. These findings suggest that compared with the female SDN, more Calb neurons migrate to and are incorporated into the male SDN, thereby yielding the sex difference in the number of Calb neurons at the late postnatal period, and that Calb1 plays a significant role in clustering neurons in the SDN.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03981-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03981-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

表达Calb1的神经元编码钙结合蛋白D-28K (Calb),这是一种钙结合蛋白,是小鼠视前区两性二态核(SDN)的重要组成部分。因此,Calb被用作研究SDN的标记物。雄性SDN中Calb神经元的数量多于雌性,这种性别差异在青春期前就出现了。然而,这种差异出现的时间和Calb1在SDN中的作用仍不清楚。在这项研究中,我们研究了Calb神经元的性别差异何时出现,以及Calb1是否需要组织SDN。对Calb神经元的时间变化进行分析发现,在出生后15 ~ 20天,雄性小鼠的SDN中Calb神经元显著增加,而雌性小鼠则没有,这导致了性别差异。然而,在出生后期,SDN中的Calb1 mRNA保持不变,并且在性别之间没有差异。通过将腺相关病毒载体注射到新生小鼠视前区进行Calb1敲除(KD)。对出生后Calb1-KD小鼠的分析表明,Calb1 KD不仅降低了Calb1的表达,而且还降低了构成SDN的神经元的数量。这些结果表明,与雌性SDN相比,更多的Calb神经元迁移并并入雄性SDN,从而在产后后期产生Calb神经元数量的性别差异,Calb1在SDN神经元聚集中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of the sex difference in calbindin D-28K neurons and the role of calbindin D-28K in clustering neurons of the preoptic area in mice.

Neurons expressing Calb1 that encodes calbindin D-28K (Calb), a calcium-binding protein, are significant components of the sexually dimorphic nucleus (SDN) of the preoptic area in mice. Calb is therefore used as a marker to study the SDN. The number of Calb neurons in the SDN is greater in males than in females, and this sex difference emerges before puberty. However, the timing of emergence of this difference and the role of Calb1 in the SDN remain unclear. In this study, we investigated when the sex difference in Calb neurons appears and whether Calb1 is required for organizing the SDN. Profiling the temporal changes in Calb neurons revealed that these neurons dramatically increased in the SDN during postnatal days 15 to 20 in males but not in females, resulting in a significant difference between sexes. However, the Calb1 mRNA in the SDN remained unchanged during the late postnatal period and did not differ between sexes. Calb1 knockdown (KD) was performed by injecting an adeno-associated virus vector into the preoptic area of neonatal mice. The analysis of postnatal Calb1-KD mice revealed that Calb1 KD reduced not only Calb1 expression but also the number of neurons comprising the SDN. These findings suggest that compared with the female SDN, more Calb neurons migrate to and are incorporated into the male SDN, thereby yielding the sex difference in the number of Calb neurons at the late postnatal period, and that Calb1 plays a significant role in clustering neurons in the SDN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信