估计隐性霍乱负担和干预效果。

IF 2 4区 数学 Q2 BIOLOGY
Murshed Ahmed Ovi, Andrei Afilipoaei, Hao Wang
{"title":"估计隐性霍乱负担和干预效果。","authors":"Murshed Ahmed Ovi, Andrei Afilipoaei, Hao Wang","doi":"10.1007/s11538-025-01460-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cholera remains a significant public health threat in many parts of the world, with differing levels of compliance to intervention strategies and undocumented cases contributing to reservoir contamination with Vibrio cholerae at varying rates alongside reported cases. To address this, we incorporate an inapparent cholera-infected compartment into the iSIR model and equip it with parameters depicting vaccination and compliance levels for water and food sanitation, handwashing, and safe fecal disposal. Our model shows that the bacteria shedding from the inapparent infection can significantly affect the spread of cholera. Also, we identify that lowering the bacteria ingestion rate among the susceptible and controlling the bacteria shedding from reported infected are two key components for obtaining a disease-free state in the long run. The model fitting to cholera outbreaks in Haiti, Kenya, Malawi, and Zimbabwe implies that at least 88.5% of cases are inapparent, with the first reporting appearing up to 11 weeks after the start of the outbreak. Additionally, we find that the combination of water and food sanitation and handwashing is the most effective intervention strategy for reducing the cholera outbreak peak if compliance with these measures remains at moderate or high levels. However, with low compliance, safe fecal disposal of the reported infected individuals combined with vaccination coverage of the susceptible population is suggested to obtain the lowest outbreak peak.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 6","pages":"80"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Hidden Cholera Burden and Intervention Effectiveness.\",\"authors\":\"Murshed Ahmed Ovi, Andrei Afilipoaei, Hao Wang\",\"doi\":\"10.1007/s11538-025-01460-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholera remains a significant public health threat in many parts of the world, with differing levels of compliance to intervention strategies and undocumented cases contributing to reservoir contamination with Vibrio cholerae at varying rates alongside reported cases. To address this, we incorporate an inapparent cholera-infected compartment into the iSIR model and equip it with parameters depicting vaccination and compliance levels for water and food sanitation, handwashing, and safe fecal disposal. Our model shows that the bacteria shedding from the inapparent infection can significantly affect the spread of cholera. Also, we identify that lowering the bacteria ingestion rate among the susceptible and controlling the bacteria shedding from reported infected are two key components for obtaining a disease-free state in the long run. The model fitting to cholera outbreaks in Haiti, Kenya, Malawi, and Zimbabwe implies that at least 88.5% of cases are inapparent, with the first reporting appearing up to 11 weeks after the start of the outbreak. Additionally, we find that the combination of water and food sanitation and handwashing is the most effective intervention strategy for reducing the cholera outbreak peak if compliance with these measures remains at moderate or high levels. However, with low compliance, safe fecal disposal of the reported infected individuals combined with vaccination coverage of the susceptible population is suggested to obtain the lowest outbreak peak.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 6\",\"pages\":\"80\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-025-01460-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01460-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在世界许多地区,霍乱仍然是一个重大的公共卫生威胁,对干预战略的遵守程度不同,未记录的病例与报告的病例一起,导致霍乱弧菌以不同的速度污染水库。为了解决这个问题,我们在iSIR模型中加入了一个不明显的霍乱感染隔间,并为其配备了描述疫苗接种以及水和食品卫生、洗手和安全粪便处理的依从性水平的参数。我们的模型表明,从隐性感染中脱落的细菌可以显著影响霍乱的传播。同时,我们发现降低易感人群的细菌摄取率和控制报告感染的细菌脱落是获得长期无病状态的两个关键组成部分。适合于海地、肯尼亚、马拉维和津巴布韦霍乱暴发的模型表明,至少88.5%的病例是不明显的,在疫情开始后11周才出现首次报告。此外,我们发现,如果对这些措施的遵守程度保持在中等或高度,那么将水和食品卫生与洗手相结合是减少霍乱爆发高峰的最有效干预策略。然而,由于依从性低,建议对报告的感染者进行安全的粪便处理,并结合易感人群的疫苗接种覆盖率,以获得最低的爆发高峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Hidden Cholera Burden and Intervention Effectiveness.

Cholera remains a significant public health threat in many parts of the world, with differing levels of compliance to intervention strategies and undocumented cases contributing to reservoir contamination with Vibrio cholerae at varying rates alongside reported cases. To address this, we incorporate an inapparent cholera-infected compartment into the iSIR model and equip it with parameters depicting vaccination and compliance levels for water and food sanitation, handwashing, and safe fecal disposal. Our model shows that the bacteria shedding from the inapparent infection can significantly affect the spread of cholera. Also, we identify that lowering the bacteria ingestion rate among the susceptible and controlling the bacteria shedding from reported infected are two key components for obtaining a disease-free state in the long run. The model fitting to cholera outbreaks in Haiti, Kenya, Malawi, and Zimbabwe implies that at least 88.5% of cases are inapparent, with the first reporting appearing up to 11 weeks after the start of the outbreak. Additionally, we find that the combination of water and food sanitation and handwashing is the most effective intervention strategy for reducing the cholera outbreak peak if compliance with these measures remains at moderate or high levels. However, with low compliance, safe fecal disposal of the reported infected individuals combined with vaccination coverage of the susceptible population is suggested to obtain the lowest outbreak peak.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信