{"title":"CCDC110通过靶向调控TGFBR1激活TGF-β/SMAD信号通路,促进肝癌的进展。","authors":"Hao Shen, Haifeng Li, Haodong Tang","doi":"10.1186/s12935-025-03803-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is recognized for its high growth rate, high degree of invasiveness, and tendency to spread, leading to a significant number of deaths. In the course of studying the transcriptome of HCC tissues, the protein coiled-coil domain-containing 110 (CCDC110) was identified. By employing tandem mass tag (TMT) quantitative proteomics, this research identified transforming growth factor beta receptor 1 (TGFBR1) as a potential target influenced by CCDC110. The purpose of this study was to examine the role of CCDC110 in the growth and invasion of HCC and to identify new potential targets for the treatment of HCC.</p><p><strong>Methods: </strong>In vitro and in vivo experiments were conducted to investigate the role and mechanism of CCDC110 in promoting the malignant behaviors of hepatocellular carcinoma through the regulation of TGFBR1.</p><p><strong>Results: </strong>We determined that the mRNA and protein levels of CCDC110 are elevated in hepatocellular carcinoma tissues and cell lines, which is correlated with a worse patient prognosis. CCDC110 enhances the proliferation of hepatocellular carcinoma cells, reduces their apoptosis, and increases their migration and invasion capabilities. In the cytoplasm, CCDC110 interacts with TGFBR1, enhancing stability of TGFBR1, promoting proliferation, and reducing the apoptosis, migration, and invasion of hepatocellular carcinoma cells through TGFBR1 both in vivo and in vitro. The CCDC110-TGFBR1 axis stimulates EMT, thereby enhancing the malignant biological behavior of hepatocellular carcinoma by activating the TGF-β/SMAD signaling pathway. The protein levels of CCDC110/TGFBR1 in hepatocellular carcinoma tissues are highly expressed and positively correlated. A combined analysis of CCDC110 and TGFBR1 provides improved guidance for the prognosis of patients with hepatocellular carcinoma.</p><p><strong>Conclusion: </strong>CCDC110 is highly expressed in hepatocellular carcinoma tissues and cell lines, and the CCDC110-TGFBR1 axis facilitates EMT and the malignant biological behavior of hepatocellular carcinoma through the activation of the TGF-β/SMAD signaling pathway.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"183"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093845/pdf/","citationCount":"0","resultStr":"{\"title\":\"CCDC110 promotes the progression of hepatocellular carcinoma by activating the TGF-β/SMAD signaling pathway through targeted regulation of TGFBR1.\",\"authors\":\"Hao Shen, Haifeng Li, Haodong Tang\",\"doi\":\"10.1186/s12935-025-03803-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is recognized for its high growth rate, high degree of invasiveness, and tendency to spread, leading to a significant number of deaths. In the course of studying the transcriptome of HCC tissues, the protein coiled-coil domain-containing 110 (CCDC110) was identified. By employing tandem mass tag (TMT) quantitative proteomics, this research identified transforming growth factor beta receptor 1 (TGFBR1) as a potential target influenced by CCDC110. The purpose of this study was to examine the role of CCDC110 in the growth and invasion of HCC and to identify new potential targets for the treatment of HCC.</p><p><strong>Methods: </strong>In vitro and in vivo experiments were conducted to investigate the role and mechanism of CCDC110 in promoting the malignant behaviors of hepatocellular carcinoma through the regulation of TGFBR1.</p><p><strong>Results: </strong>We determined that the mRNA and protein levels of CCDC110 are elevated in hepatocellular carcinoma tissues and cell lines, which is correlated with a worse patient prognosis. CCDC110 enhances the proliferation of hepatocellular carcinoma cells, reduces their apoptosis, and increases their migration and invasion capabilities. In the cytoplasm, CCDC110 interacts with TGFBR1, enhancing stability of TGFBR1, promoting proliferation, and reducing the apoptosis, migration, and invasion of hepatocellular carcinoma cells through TGFBR1 both in vivo and in vitro. The CCDC110-TGFBR1 axis stimulates EMT, thereby enhancing the malignant biological behavior of hepatocellular carcinoma by activating the TGF-β/SMAD signaling pathway. The protein levels of CCDC110/TGFBR1 in hepatocellular carcinoma tissues are highly expressed and positively correlated. A combined analysis of CCDC110 and TGFBR1 provides improved guidance for the prognosis of patients with hepatocellular carcinoma.</p><p><strong>Conclusion: </strong>CCDC110 is highly expressed in hepatocellular carcinoma tissues and cell lines, and the CCDC110-TGFBR1 axis facilitates EMT and the malignant biological behavior of hepatocellular carcinoma through the activation of the TGF-β/SMAD signaling pathway.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"25 1\",\"pages\":\"183\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-025-03803-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03803-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
CCDC110 promotes the progression of hepatocellular carcinoma by activating the TGF-β/SMAD signaling pathway through targeted regulation of TGFBR1.
Background: Hepatocellular carcinoma (HCC) is recognized for its high growth rate, high degree of invasiveness, and tendency to spread, leading to a significant number of deaths. In the course of studying the transcriptome of HCC tissues, the protein coiled-coil domain-containing 110 (CCDC110) was identified. By employing tandem mass tag (TMT) quantitative proteomics, this research identified transforming growth factor beta receptor 1 (TGFBR1) as a potential target influenced by CCDC110. The purpose of this study was to examine the role of CCDC110 in the growth and invasion of HCC and to identify new potential targets for the treatment of HCC.
Methods: In vitro and in vivo experiments were conducted to investigate the role and mechanism of CCDC110 in promoting the malignant behaviors of hepatocellular carcinoma through the regulation of TGFBR1.
Results: We determined that the mRNA and protein levels of CCDC110 are elevated in hepatocellular carcinoma tissues and cell lines, which is correlated with a worse patient prognosis. CCDC110 enhances the proliferation of hepatocellular carcinoma cells, reduces their apoptosis, and increases their migration and invasion capabilities. In the cytoplasm, CCDC110 interacts with TGFBR1, enhancing stability of TGFBR1, promoting proliferation, and reducing the apoptosis, migration, and invasion of hepatocellular carcinoma cells through TGFBR1 both in vivo and in vitro. The CCDC110-TGFBR1 axis stimulates EMT, thereby enhancing the malignant biological behavior of hepatocellular carcinoma by activating the TGF-β/SMAD signaling pathway. The protein levels of CCDC110/TGFBR1 in hepatocellular carcinoma tissues are highly expressed and positively correlated. A combined analysis of CCDC110 and TGFBR1 provides improved guidance for the prognosis of patients with hepatocellular carcinoma.
Conclusion: CCDC110 is highly expressed in hepatocellular carcinoma tissues and cell lines, and the CCDC110-TGFBR1 axis facilitates EMT and the malignant biological behavior of hepatocellular carcinoma through the activation of the TGF-β/SMAD signaling pathway.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.