Pierre Monmarché, Sebastian J Schreiber, Édouard Strickler
{"title":"环境波动的速度和模式对人口增长的影响:周期和随机环境的Lyapunov指数的慢速和快极限逼近。","authors":"Pierre Monmarché, Sebastian J Schreiber, Édouard Strickler","doi":"10.1007/s11538-025-01443-z","DOIUrl":null,"url":null,"abstract":"<p><p>Populations consist of individuals living in different states and experiencing temporally varying environmental conditions. Individuals may differ in their geographic location, stage of development (e.g., juvenile versus adult), or physiological state (infected or susceptible). Environmental conditions may vary due to abiotic (e.g. temperature) or biotic (e.g. resource availability) factors. As the survival, growth, and reproduction of individuals depend on their state and environmental conditions, environmental fluctuations often impact population growth. Here, we examine to what extent the tempo and mode of these fluctuations matter for population growth. We model population growth for a population with d individual states and experiencing N different environmental states. The models are switching, linear ordinary differential equations <math> <mrow><msup><mi>x</mi> <mo>'</mo></msup> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mi>A</mi> <mrow><mo>(</mo> <mi>σ</mi> <mrow><mo>(</mo> <mi>ω</mi> <mi>t</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mi>x</mi> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> where <math><mrow><mi>x</mi> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mo>(</mo> <msub><mi>x</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>x</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </math> corresponds to the population densities in the d individual states, <math><mrow><mi>σ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> is a piece-wise constant function representing the fluctuations in the environmental states <math><mrow><mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi></mrow> </math> , <math><mi>ω</mi></math> is the frequency of the environmental fluctuations, and <math><mrow><mi>A</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>A</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> are Metzler matrices representing the population dynamics in the environmental states <math><mrow><mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi></mrow> </math> . <math><mrow><mi>σ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> can either be a periodic function or correspond to a continuous-time Markov chain. Under suitable conditions, there exists a Lyapunov exponent <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> such that <math> <mrow><msub><mo>lim</mo> <mrow><mi>t</mi> <mo>→</mo> <mi>∞</mi></mrow> </msub> <mfrac><mn>1</mn> <mi>t</mi></mfrac> <mo>log</mo> <msub><mo>∑</mo> <mi>i</mi></msub> <msub><mi>x</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mi>Λ</mi> <mrow><mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </mrow> </math> for all non-negative, non-zero initial conditions x(0) (with probability one in the random case). For both random and periodic switching, we derive analytical first-order and second-order approximations of <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> in the limits of slow ( <math><mrow><mi>ω</mi> <mo>→</mo> <mn>0</mn></mrow> </math> ) and fast ( <math><mrow><mi>ω</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ) environmental fluctuations. When the order of switching and the average switching times are equal, we show that the first-order approximations of <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> are equivalent in the slow-switching limit, but not in the fast-switching limit. Hence, the mode (random versus periodic) of switching matters for population growth. We illustrate our results with applications to a simple stage-structured model and a general spatially structured model. When dispersal rates are symmetric, the first-order approximations suggest that population growth rates decrease with the frequency of switching, which is consistent with earlier work on periodic switching. In the absence of dispersal symmetry, we demonstrate that <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> can be non-monotonic in <math><mi>ω</mi></math> . In conclusion, our results show that population growth rates often depend both on the tempo ( <math><mi>ω</mi></math> ) and the mode (random versus deterministic) of environmental fluctuations.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 6","pages":"81"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments.\",\"authors\":\"Pierre Monmarché, Sebastian J Schreiber, Édouard Strickler\",\"doi\":\"10.1007/s11538-025-01443-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Populations consist of individuals living in different states and experiencing temporally varying environmental conditions. Individuals may differ in their geographic location, stage of development (e.g., juvenile versus adult), or physiological state (infected or susceptible). Environmental conditions may vary due to abiotic (e.g. temperature) or biotic (e.g. resource availability) factors. As the survival, growth, and reproduction of individuals depend on their state and environmental conditions, environmental fluctuations often impact population growth. Here, we examine to what extent the tempo and mode of these fluctuations matter for population growth. We model population growth for a population with d individual states and experiencing N different environmental states. The models are switching, linear ordinary differential equations <math> <mrow><msup><mi>x</mi> <mo>'</mo></msup> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mi>A</mi> <mrow><mo>(</mo> <mi>σ</mi> <mrow><mo>(</mo> <mi>ω</mi> <mi>t</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mi>x</mi> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> where <math><mrow><mi>x</mi> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mo>(</mo> <msub><mi>x</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>x</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </math> corresponds to the population densities in the d individual states, <math><mrow><mi>σ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> is a piece-wise constant function representing the fluctuations in the environmental states <math><mrow><mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi></mrow> </math> , <math><mi>ω</mi></math> is the frequency of the environmental fluctuations, and <math><mrow><mi>A</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>A</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> are Metzler matrices representing the population dynamics in the environmental states <math><mrow><mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi></mrow> </math> . <math><mrow><mi>σ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> can either be a periodic function or correspond to a continuous-time Markov chain. Under suitable conditions, there exists a Lyapunov exponent <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> such that <math> <mrow><msub><mo>lim</mo> <mrow><mi>t</mi> <mo>→</mo> <mi>∞</mi></mrow> </msub> <mfrac><mn>1</mn> <mi>t</mi></mfrac> <mo>log</mo> <msub><mo>∑</mo> <mi>i</mi></msub> <msub><mi>x</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> <mo>=</mo> <mi>Λ</mi> <mrow><mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </mrow> </math> for all non-negative, non-zero initial conditions x(0) (with probability one in the random case). For both random and periodic switching, we derive analytical first-order and second-order approximations of <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> in the limits of slow ( <math><mrow><mi>ω</mi> <mo>→</mo> <mn>0</mn></mrow> </math> ) and fast ( <math><mrow><mi>ω</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> ) environmental fluctuations. When the order of switching and the average switching times are equal, we show that the first-order approximations of <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> are equivalent in the slow-switching limit, but not in the fast-switching limit. Hence, the mode (random versus periodic) of switching matters for population growth. We illustrate our results with applications to a simple stage-structured model and a general spatially structured model. When dispersal rates are symmetric, the first-order approximations suggest that population growth rates decrease with the frequency of switching, which is consistent with earlier work on periodic switching. In the absence of dispersal symmetry, we demonstrate that <math><mrow><mi>Λ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo></mrow> </math> can be non-monotonic in <math><mi>ω</mi></math> . In conclusion, our results show that population growth rates often depend both on the tempo ( <math><mi>ω</mi></math> ) and the mode (random versus deterministic) of environmental fluctuations.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 6\",\"pages\":\"81\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-025-01443-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01443-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
人口是由生活在不同州并经历暂时不同的环境条件的个体组成的。个体的地理位置、发育阶段(如少年与成人)或生理状态(受感染或易感)可能不同。环境条件可能因非生物(如温度)或生物(如资源可用性)因素而变化。由于个体的生存、生长和繁殖取决于它们的状态和环境条件,环境的波动经常影响种群的增长。在这里,我们研究了这些波动的速度和模式对人口增长的影响程度。我们对具有d个个体状态和经历N个不同环境状态的人口增长建模。模型切换、线性常微分方程x ' (t) =(σ(ωt) x (t) x (t) = 1 (x (t ) , ... , x d (t))对应于d各州的人口密度,σ(t)是一个分段常数函数代表环境的波动状态1,…,N,环境波动的频率ω,(1 ) , ... ,A (n)是表示环境状态1,…,n下种群动态的Metzler矩阵。σ (t)可以是一个周期函数,也可以是一个连续时间马尔可夫链。在适当条件下,对于所有非负非零初始条件x(0)(随机情况下概率为1),存在Lyapunov指数Λ (ω)使得lim t→∞1 t log∑i xi (t) = Λ (ω)。对于随机开关和周期开关,我们在慢(ω→0)和快(ω→∞)环境波动的极限下导出了Λ (ω)的一阶和二阶解析逼近。当开关阶数和平均开关次数相等时,我们证明了Λ (ω)的一阶近似在慢开关极限是等价的,而在快开关极限不是等价的。因此,切换的模式(随机还是周期性)对人口增长很重要。我们用一个简单的阶段结构模型和一个一般的空间结构模型来说明我们的结果。当扩散速率对称时,一阶近似表明种群增长率随着切换频率的增加而降低,这与早期关于周期性切换的研究结果一致。在没有弥散对称性的情况下,我们证明了Λ (ω)在ω中可以是非单调的。总之,我们的结果表明,人口增长率通常取决于环境波动的速度(ω)和模式(随机与确定性)。
Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments.
Populations consist of individuals living in different states and experiencing temporally varying environmental conditions. Individuals may differ in their geographic location, stage of development (e.g., juvenile versus adult), or physiological state (infected or susceptible). Environmental conditions may vary due to abiotic (e.g. temperature) or biotic (e.g. resource availability) factors. As the survival, growth, and reproduction of individuals depend on their state and environmental conditions, environmental fluctuations often impact population growth. Here, we examine to what extent the tempo and mode of these fluctuations matter for population growth. We model population growth for a population with d individual states and experiencing N different environmental states. The models are switching, linear ordinary differential equations where corresponds to the population densities in the d individual states, is a piece-wise constant function representing the fluctuations in the environmental states , is the frequency of the environmental fluctuations, and are Metzler matrices representing the population dynamics in the environmental states . can either be a periodic function or correspond to a continuous-time Markov chain. Under suitable conditions, there exists a Lyapunov exponent such that for all non-negative, non-zero initial conditions x(0) (with probability one in the random case). For both random and periodic switching, we derive analytical first-order and second-order approximations of in the limits of slow ( ) and fast ( ) environmental fluctuations. When the order of switching and the average switching times are equal, we show that the first-order approximations of are equivalent in the slow-switching limit, but not in the fast-switching limit. Hence, the mode (random versus periodic) of switching matters for population growth. We illustrate our results with applications to a simple stage-structured model and a general spatially structured model. When dispersal rates are symmetric, the first-order approximations suggest that population growth rates decrease with the frequency of switching, which is consistent with earlier work on periodic switching. In the absence of dispersal symmetry, we demonstrate that can be non-monotonic in . In conclusion, our results show that population growth rates often depend both on the tempo ( ) and the mode (random versus deterministic) of environmental fluctuations.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.