用相干拉曼散射成像研究不透明固体表面上的硅酮薄膜。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Julian Naser, George Sarau, Jan Wrege, Silke Christiansen
{"title":"用相干拉曼散射成像研究不透明固体表面上的硅酮薄膜。","authors":"Julian Naser, George Sarau, Jan Wrege, Silke Christiansen","doi":"10.1177/00037028251339495","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement of thin films with a thickness in the nanometer range is challenging because it requires extensive sample preparation, vacuum condition, long measurement times or using test inks that additionally contaminate the surface. The detection of those films is crucial for production processes that rely on a boundary layer to create a proper interface like adhesive bonding, coating, or lithography in various industries like automotive, solar, energy storage and semiconductor manufacturing. Consequently, there is a need for quick, reliable measurement techniques with high sensitivity to ensure the technical cleanliness of the opaque surface. In this paper the feasibility of epi-detection with coherent Raman scattering (CRS) Imaging is investigated on different substrate materials and demonstrated to be a method for fast scanning of large nontransparent surfaces including chemical fingerprinting of the substances atop. Therefore, various samples with low surface energy filmic contaminations from polysiloxanes are produced and investigated with CRS Imaging, a technique mostly applied to biological samples with the novel use demonstrated here for surface contamination monitoring in material sciences.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251339495"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Thin Silicone Films on Opaque Solid Surfaces Using Coherent Raman Scattering Imaging.\",\"authors\":\"Julian Naser, George Sarau, Jan Wrege, Silke Christiansen\",\"doi\":\"10.1177/00037028251339495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The measurement of thin films with a thickness in the nanometer range is challenging because it requires extensive sample preparation, vacuum condition, long measurement times or using test inks that additionally contaminate the surface. The detection of those films is crucial for production processes that rely on a boundary layer to create a proper interface like adhesive bonding, coating, or lithography in various industries like automotive, solar, energy storage and semiconductor manufacturing. Consequently, there is a need for quick, reliable measurement techniques with high sensitivity to ensure the technical cleanliness of the opaque surface. In this paper the feasibility of epi-detection with coherent Raman scattering (CRS) Imaging is investigated on different substrate materials and demonstrated to be a method for fast scanning of large nontransparent surfaces including chemical fingerprinting of the substances atop. Therefore, various samples with low surface energy filmic contaminations from polysiloxanes are produced and investigated with CRS Imaging, a technique mostly applied to biological samples with the novel use demonstrated here for surface contamination monitoring in material sciences.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251339495\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251339495\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251339495","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

纳米厚度薄膜的测量具有挑战性,因为它需要大量的样品制备,真空条件,长测量时间或使用额外污染表面的测试油墨。在汽车、太阳能、储能和半导体制造等不同行业中,这些薄膜的检测对于依赖边界层来创建适当界面的生产过程至关重要,例如粘合剂粘合、涂层或光刻。因此,需要一种快速、可靠、高灵敏度的测量技术来确保不透明表面的技术清洁度。本文研究了相干拉曼散射(CRS)成像在不同衬底材料上进行外延探测的可行性,并证明了它是一种快速扫描大型非透明表面的方法,包括上面物质的化学指纹。因此,用CRS成像技术生产和研究了各种具有低表面能的聚硅氧烷膜污染的样品,该技术主要应用于生物样品,在材料科学中展示了表面污染监测的新用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Thin Silicone Films on Opaque Solid Surfaces Using Coherent Raman Scattering Imaging.

The measurement of thin films with a thickness in the nanometer range is challenging because it requires extensive sample preparation, vacuum condition, long measurement times or using test inks that additionally contaminate the surface. The detection of those films is crucial for production processes that rely on a boundary layer to create a proper interface like adhesive bonding, coating, or lithography in various industries like automotive, solar, energy storage and semiconductor manufacturing. Consequently, there is a need for quick, reliable measurement techniques with high sensitivity to ensure the technical cleanliness of the opaque surface. In this paper the feasibility of epi-detection with coherent Raman scattering (CRS) Imaging is investigated on different substrate materials and demonstrated to be a method for fast scanning of large nontransparent surfaces including chemical fingerprinting of the substances atop. Therefore, various samples with low surface energy filmic contaminations from polysiloxanes are produced and investigated with CRS Imaging, a technique mostly applied to biological samples with the novel use demonstrated here for surface contamination monitoring in material sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信