Mohamed J Saadh, Qusay Mohammed Hussain, Rafid Jihad Albadr, Hardik Doshi, M M Rekha, Mayank Kundlas, Amrita Pal, Jasur Rizaev, Waam Mohammed Taher, Mariem Alwan, Mahmod Jasem Jawad, Ali M Ali Al-Nuaimi, Bagher Farhood
{"title":"放射组学和深度学习的先进特征融合,用于在x射线图像上准确检测腕关节骨折。","authors":"Mohamed J Saadh, Qusay Mohammed Hussain, Rafid Jihad Albadr, Hardik Doshi, M M Rekha, Mayank Kundlas, Amrita Pal, Jasur Rizaev, Waam Mohammed Taher, Mariem Alwan, Mahmod Jasem Jawad, Ali M Ali Al-Nuaimi, Bagher Farhood","doi":"10.1186/s12891-025-08733-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to develop a hybrid diagnostic framework integrating radiomic and deep features for accurate and reproducible detection and classification of wrist fractures using X-ray images.</p><p><strong>Materials and methods: </strong>A total of 3,537 X-ray images, including 1,871 fracture and 1,666 non-fracture cases, were collected from three healthcare centers. Radiomic features were extracted using the PyRadiomics library, and deep features were derived from the bottleneck layer of an autoencoder. Both feature modalities underwent reliability assessment via Intraclass Correlation Coefficient (ICC) and cosine similarity. Feature selection methods, including ANOVA, Mutual Information (MI), Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE), were applied to optimize the feature set. Classifiers such as XGBoost, CatBoost, Random Forest, and a Voting Classifier were used to evaluate diagnostic performance. The dataset was divided into training (70%) and testing (30%) sets, and metrics such as accuracy, sensitivity, and AUC-ROC were used for evaluation.</p><p><strong>Results: </strong>The combined radiomic and deep feature approach consistently outperformed standalone methods. The Voting Classifier paired with MI achieved the highest performance, with a test accuracy of 95%, sensitivity of 94%, and AUC-ROC of 96%. The end-to-end model achieved competitive results with an accuracy of 93% and AUC-ROC of 94%. SHAP analysis and t-SNE visualizations confirmed the interpretability and robustness of the selected features.</p><p><strong>Conclusions: </strong>This hybrid framework demonstrates the potential for integrating radiomic and deep features to enhance diagnostic performance for wrist and forearm fractures, providing a reliable and interpretable solution suitable for clinical applications.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"498"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced feature fusion of radiomics and deep learning for accurate detection of wrist fractures on X-ray images.\",\"authors\":\"Mohamed J Saadh, Qusay Mohammed Hussain, Rafid Jihad Albadr, Hardik Doshi, M M Rekha, Mayank Kundlas, Amrita Pal, Jasur Rizaev, Waam Mohammed Taher, Mariem Alwan, Mahmod Jasem Jawad, Ali M Ali Al-Nuaimi, Bagher Farhood\",\"doi\":\"10.1186/s12891-025-08733-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to develop a hybrid diagnostic framework integrating radiomic and deep features for accurate and reproducible detection and classification of wrist fractures using X-ray images.</p><p><strong>Materials and methods: </strong>A total of 3,537 X-ray images, including 1,871 fracture and 1,666 non-fracture cases, were collected from three healthcare centers. Radiomic features were extracted using the PyRadiomics library, and deep features were derived from the bottleneck layer of an autoencoder. Both feature modalities underwent reliability assessment via Intraclass Correlation Coefficient (ICC) and cosine similarity. Feature selection methods, including ANOVA, Mutual Information (MI), Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE), were applied to optimize the feature set. Classifiers such as XGBoost, CatBoost, Random Forest, and a Voting Classifier were used to evaluate diagnostic performance. The dataset was divided into training (70%) and testing (30%) sets, and metrics such as accuracy, sensitivity, and AUC-ROC were used for evaluation.</p><p><strong>Results: </strong>The combined radiomic and deep feature approach consistently outperformed standalone methods. The Voting Classifier paired with MI achieved the highest performance, with a test accuracy of 95%, sensitivity of 94%, and AUC-ROC of 96%. The end-to-end model achieved competitive results with an accuracy of 93% and AUC-ROC of 94%. SHAP analysis and t-SNE visualizations confirmed the interpretability and robustness of the selected features.</p><p><strong>Conclusions: </strong>This hybrid framework demonstrates the potential for integrating radiomic and deep features to enhance diagnostic performance for wrist and forearm fractures, providing a reliable and interpretable solution suitable for clinical applications.</p>\",\"PeriodicalId\":9189,\"journal\":{\"name\":\"BMC Musculoskeletal Disorders\",\"volume\":\"26 1\",\"pages\":\"498\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Musculoskeletal Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12891-025-08733-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08733-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Advanced feature fusion of radiomics and deep learning for accurate detection of wrist fractures on X-ray images.
Objective: The aim of this study was to develop a hybrid diagnostic framework integrating radiomic and deep features for accurate and reproducible detection and classification of wrist fractures using X-ray images.
Materials and methods: A total of 3,537 X-ray images, including 1,871 fracture and 1,666 non-fracture cases, were collected from three healthcare centers. Radiomic features were extracted using the PyRadiomics library, and deep features were derived from the bottleneck layer of an autoencoder. Both feature modalities underwent reliability assessment via Intraclass Correlation Coefficient (ICC) and cosine similarity. Feature selection methods, including ANOVA, Mutual Information (MI), Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE), were applied to optimize the feature set. Classifiers such as XGBoost, CatBoost, Random Forest, and a Voting Classifier were used to evaluate diagnostic performance. The dataset was divided into training (70%) and testing (30%) sets, and metrics such as accuracy, sensitivity, and AUC-ROC were used for evaluation.
Results: The combined radiomic and deep feature approach consistently outperformed standalone methods. The Voting Classifier paired with MI achieved the highest performance, with a test accuracy of 95%, sensitivity of 94%, and AUC-ROC of 96%. The end-to-end model achieved competitive results with an accuracy of 93% and AUC-ROC of 94%. SHAP analysis and t-SNE visualizations confirmed the interpretability and robustness of the selected features.
Conclusions: This hybrid framework demonstrates the potential for integrating radiomic and deep features to enhance diagnostic performance for wrist and forearm fractures, providing a reliable and interpretable solution suitable for clinical applications.
期刊介绍:
BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.