界面和手性分子的自旋轨道效应建模。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-06-04 Epub Date: 2025-05-20 DOI:10.1021/acs.nanolett.5c00544
Poonam Kumari, Cyrille Barreteau, Alexander Smogunov
{"title":"界面和手性分子的自旋轨道效应建模。","authors":"Poonam Kumari, Cyrille Barreteau, Alexander Smogunov","doi":"10.1021/acs.nanolett.5c00544","DOIUrl":null,"url":null,"abstract":"<p><p>Using orbital angular momentum (OAM) currents represents a growing field in nanoelectronics known as \"spin-orbitronics\". Here, using the electronic wave packets approach, we explore the possibility of generation and propagation of orbital currents in two representative systems: an oxidized copper surface (where large OAMs are formed at the Cu/O interface) and a model carbon chain/chiral molecule junction. In the Cu/O system, the orbital polarization of incident wave packets is strongly enhanced at the Cu/O interface but rapidly decays in bulk copper. Interestingly, if a finite transmission across the oxygen layer is allowed (a tunnel junction), a significant spin-polarization of transmitted current is predicted; it persists at long distance and can be tuned by applied in-plane voltage. For molecular junctions, the mixing of carbon <i>p</i><sub><i>x</i></sub>, <i>p</i><sub><i>y</i></sub> channels by a chiral molecular orbital gives rise to efficient generation of orbital current and to its long-range propagation along the carbon chain.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"8869-8875"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Spin-Orbitronics Effects at Interfaces and Chiral Molecules.\",\"authors\":\"Poonam Kumari, Cyrille Barreteau, Alexander Smogunov\",\"doi\":\"10.1021/acs.nanolett.5c00544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using orbital angular momentum (OAM) currents represents a growing field in nanoelectronics known as \\\"spin-orbitronics\\\". Here, using the electronic wave packets approach, we explore the possibility of generation and propagation of orbital currents in two representative systems: an oxidized copper surface (where large OAMs are formed at the Cu/O interface) and a model carbon chain/chiral molecule junction. In the Cu/O system, the orbital polarization of incident wave packets is strongly enhanced at the Cu/O interface but rapidly decays in bulk copper. Interestingly, if a finite transmission across the oxygen layer is allowed (a tunnel junction), a significant spin-polarization of transmitted current is predicted; it persists at long distance and can be tuned by applied in-plane voltage. For molecular junctions, the mixing of carbon <i>p</i><sub><i>x</i></sub>, <i>p</i><sub><i>y</i></sub> channels by a chiral molecular orbital gives rise to efficient generation of orbital current and to its long-range propagation along the carbon chain.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"8869-8875\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00544\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00544","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用轨道角动量(OAM)电流代表了纳米电子学中一个被称为“自旋轨道电子学”的新兴领域。在这里,使用电子波包方法,我们探索了两种代表性系统中轨道电流产生和传播的可能性:氧化铜表面(在Cu/O界面处形成大OAMs)和模型碳链/手性分子结。在Cu/O体系中,入射波包的轨道极化在Cu/O界面处得到强烈增强,而在体铜中则迅速衰减。有趣的是,如果允许通过氧层的有限传输(隧道结),则可以预测传输电流的显著自旋极化;它在远距离上持续存在,并且可以通过施加面内电压来调谐。对于分子结,通过手性分子轨道混合碳px、py通道可以有效地产生轨道电流,并使其沿着碳链长距离传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling Spin-Orbitronics Effects at Interfaces and Chiral Molecules.

Modeling Spin-Orbitronics Effects at Interfaces and Chiral Molecules.

Using orbital angular momentum (OAM) currents represents a growing field in nanoelectronics known as "spin-orbitronics". Here, using the electronic wave packets approach, we explore the possibility of generation and propagation of orbital currents in two representative systems: an oxidized copper surface (where large OAMs are formed at the Cu/O interface) and a model carbon chain/chiral molecule junction. In the Cu/O system, the orbital polarization of incident wave packets is strongly enhanced at the Cu/O interface but rapidly decays in bulk copper. Interestingly, if a finite transmission across the oxygen layer is allowed (a tunnel junction), a significant spin-polarization of transmitted current is predicted; it persists at long distance and can be tuned by applied in-plane voltage. For molecular junctions, the mixing of carbon px, py channels by a chiral molecular orbital gives rise to efficient generation of orbital current and to its long-range propagation along the carbon chain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信