自组装分子基钙钛矿太阳能电池的埋藏界面修饰和光管理

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-04-07 DOI:10.1002/solr.202500098
Junsheng Wu, Yonglei Han, Xinbo Ai, Lei Wang, Guicheng Yu, Yujun Liu, Ling Han, Qi Cao, Yuxuan Feng, Hanlin Hu, Yongfei Wang, Zhuo Zhao, He Yan, Haoran Lin
{"title":"自组装分子基钙钛矿太阳能电池的埋藏界面修饰和光管理","authors":"Junsheng Wu,&nbsp;Yonglei Han,&nbsp;Xinbo Ai,&nbsp;Lei Wang,&nbsp;Guicheng Yu,&nbsp;Yujun Liu,&nbsp;Ling Han,&nbsp;Qi Cao,&nbsp;Yuxuan Feng,&nbsp;Hanlin Hu,&nbsp;Yongfei Wang,&nbsp;Zhuo Zhao,&nbsp;He Yan,&nbsp;Haoran Lin","doi":"10.1002/solr.202500098","DOIUrl":null,"url":null,"abstract":"<p>For self-assembled molecule (SAM)-based inverted perovskite solar cell, the buried interface (SAM/perovskite interface) significantly determines the overall efficiency and stability of the device, which requires meticulous modulation. In this work, a series of phthalimide derivatives (namely 4-(1,3-dioxoisoindolin-2-yl)butan-1-ammonium iodide [DBAI], 2-(1,3-dioxoisoindolin-2-yl)ethan-1-ammonium iodide [DEAI], and 6-(1,3-dioxoisoindolin-2-yl)hexan-1-ammonium iodide [DHAI]) are developed as buried interfacial modification materials to improve the surface homogeneity, optimize perovskite morphology, and passivate defect sites. Among them, the DHAI with the longest alkyl chain outperforms the others, which is attributed to the steric and electronic effect of the molecular structure. Intriguingly, these interfacial modification materials can introduce ‘island-like’ morphology on the hole-selective layer, which significantly boosts the transmittance and perovskite absorption, resulting in substantially enhanced short-circuit density and power conversion efficiency of 24.71%. These findings reveal the structure–property–performance relationship of these materials and propose a novel strategy for light management at the buried interface.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buried Interfacial Modification and Light Management for Self-Assembled Molecules–Based Perovskite Solar Cells\",\"authors\":\"Junsheng Wu,&nbsp;Yonglei Han,&nbsp;Xinbo Ai,&nbsp;Lei Wang,&nbsp;Guicheng Yu,&nbsp;Yujun Liu,&nbsp;Ling Han,&nbsp;Qi Cao,&nbsp;Yuxuan Feng,&nbsp;Hanlin Hu,&nbsp;Yongfei Wang,&nbsp;Zhuo Zhao,&nbsp;He Yan,&nbsp;Haoran Lin\",\"doi\":\"10.1002/solr.202500098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For self-assembled molecule (SAM)-based inverted perovskite solar cell, the buried interface (SAM/perovskite interface) significantly determines the overall efficiency and stability of the device, which requires meticulous modulation. In this work, a series of phthalimide derivatives (namely 4-(1,3-dioxoisoindolin-2-yl)butan-1-ammonium iodide [DBAI], 2-(1,3-dioxoisoindolin-2-yl)ethan-1-ammonium iodide [DEAI], and 6-(1,3-dioxoisoindolin-2-yl)hexan-1-ammonium iodide [DHAI]) are developed as buried interfacial modification materials to improve the surface homogeneity, optimize perovskite morphology, and passivate defect sites. Among them, the DHAI with the longest alkyl chain outperforms the others, which is attributed to the steric and electronic effect of the molecular structure. Intriguingly, these interfacial modification materials can introduce ‘island-like’ morphology on the hole-selective layer, which significantly boosts the transmittance and perovskite absorption, resulting in substantially enhanced short-circuit density and power conversion efficiency of 24.71%. These findings reveal the structure–property–performance relationship of these materials and propose a novel strategy for light management at the buried interface.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500098\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500098","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

对于基于自组装分子(SAM)的倒钙钛矿太阳能电池来说,埋藏界面(SAM/钙钛矿界面)在很大程度上决定了器件的整体效率和稳定性,这需要细致的调制。在这项工作中,开发了一系列邻苯二胺衍生物(即4-(1,3-二氧异吲哚-2-基)丁-1碘化铵[DBAI], 2-(1,3-二氧异吲哚-2-基)乙基碘化铵[DEAI]和6-(1,3-二氧异吲哚-2-基)己烷-1碘化铵[DHAI])作为埋藏界面改性材料,以改善表面均匀性,优化钙钛矿形态,并钝化缺陷位点。其中,烷基链最长的DHAI表现较好,这是由于分子结构的空间和电子效应。有趣的是,这些界面改性材料可以在空穴选择层上引入“岛状”形貌,从而显著提高透光率和钙钛矿吸收率,从而大幅提高短路密度和功率转换效率,达到24.71%。这些发现揭示了这些材料的结构-性能-性能关系,并提出了在埋藏界面处进行光管理的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buried Interfacial Modification and Light Management for Self-Assembled Molecules–Based Perovskite Solar Cells

For self-assembled molecule (SAM)-based inverted perovskite solar cell, the buried interface (SAM/perovskite interface) significantly determines the overall efficiency and stability of the device, which requires meticulous modulation. In this work, a series of phthalimide derivatives (namely 4-(1,3-dioxoisoindolin-2-yl)butan-1-ammonium iodide [DBAI], 2-(1,3-dioxoisoindolin-2-yl)ethan-1-ammonium iodide [DEAI], and 6-(1,3-dioxoisoindolin-2-yl)hexan-1-ammonium iodide [DHAI]) are developed as buried interfacial modification materials to improve the surface homogeneity, optimize perovskite morphology, and passivate defect sites. Among them, the DHAI with the longest alkyl chain outperforms the others, which is attributed to the steric and electronic effect of the molecular structure. Intriguingly, these interfacial modification materials can introduce ‘island-like’ morphology on the hole-selective layer, which significantly boosts the transmittance and perovskite absorption, resulting in substantially enhanced short-circuit density and power conversion efficiency of 24.71%. These findings reveal the structure–property–performance relationship of these materials and propose a novel strategy for light management at the buried interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信