基于深度神经网络的医学图像分类

IF 0.8 4区 物理与天体物理 Q4 OPTICS
D. V. Lvov, A. N. Khaibullin, R. R. Zagidullin, S. A. Voinash
{"title":"基于深度神经网络的医学图像分类","authors":"D. V. Lvov,&nbsp;A. N. Khaibullin,&nbsp;R. R. Zagidullin,&nbsp;S. A. Voinash","doi":"10.1134/S0030400X25700018","DOIUrl":null,"url":null,"abstract":"<p>As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"132 6-12","pages":"497 - 500"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Medical Images by Deep Neural Networks\",\"authors\":\"D. V. Lvov,&nbsp;A. N. Khaibullin,&nbsp;R. R. Zagidullin,&nbsp;S. A. Voinash\",\"doi\":\"10.1134/S0030400X25700018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.</p>\",\"PeriodicalId\":723,\"journal\":{\"name\":\"Optics and Spectroscopy\",\"volume\":\"132 6-12\",\"pages\":\"497 - 500\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0030400X25700018\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X25700018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究结果表明,将ResNet-50架构与预训练的BERT语言模型相结合的模型达到了以下指标:准确率0.94,AUROC 0.87, F1 - score 0.90。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Medical Images by Deep Neural Networks

As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Spectroscopy
Optics and Spectroscopy 物理-光谱学
CiteScore
1.60
自引率
0.00%
发文量
55
审稿时长
4.5 months
期刊介绍: Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信