D. V. Lvov, A. N. Khaibullin, R. R. Zagidullin, S. A. Voinash
{"title":"基于深度神经网络的医学图像分类","authors":"D. V. Lvov, A. N. Khaibullin, R. R. Zagidullin, S. A. Voinash","doi":"10.1134/S0030400X25700018","DOIUrl":null,"url":null,"abstract":"<p>As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"132 6-12","pages":"497 - 500"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Medical Images by Deep Neural Networks\",\"authors\":\"D. V. Lvov, A. N. Khaibullin, R. R. Zagidullin, S. A. Voinash\",\"doi\":\"10.1134/S0030400X25700018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.</p>\",\"PeriodicalId\":723,\"journal\":{\"name\":\"Optics and Spectroscopy\",\"volume\":\"132 6-12\",\"pages\":\"497 - 500\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0030400X25700018\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X25700018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
研究结果表明,将ResNet-50架构与预训练的BERT语言模型相结合的模型达到了以下指标:准确率0.94,AUROC 0.87, F1 - score 0.90。
Classification of Medical Images by Deep Neural Networks
As a result of the research, the model combining the ResNet-50 architecture and the pre-trained BERT language model that has achieved the following indicators: Accuracy 0.94, AUROC 0.87, and F1‑score 0.90 has been developed.
期刊介绍:
Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.