HY-Deepnet:一种新的最优深度迁移学习框架,用于阿尔茨海默病自主检测和诊断系统

IF 5.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
S. Veluchamy , R. Bhuvaneswari , K. Ashwini , Samah Alshathri , Walid El-Shafai
{"title":"HY-Deepnet:一种新的最优深度迁移学习框架,用于阿尔茨海默病自主检测和诊断系统","authors":"S. Veluchamy ,&nbsp;R. Bhuvaneswari ,&nbsp;K. Ashwini ,&nbsp;Samah Alshathri ,&nbsp;Walid El-Shafai","doi":"10.1016/j.jestch.2025.102058","DOIUrl":null,"url":null,"abstract":"<div><div>A progressive neurological disorder, Alzheimer’s disease (AD) predominantly impacts memory and cognitive functions of diseased victims. The disease is usually identified by the buildup of abnormal protein deposits in the brain, resulting in the development of plaques and tangles that interfere with communication between nerve cells. Over time, those affected by Alzheimer’s undergo a diminishing mental capacity, affecting their daily activities and ultimately resulting in a loss of independence. While there is currently no remedy to reverse the advancement of Alzheimer’s disease, identifying the initiation of AD can prove highly beneficial within the medical field. This study presents an innovative framework for the detection and diagnosis of Alzheimer’s disease, employing deep transfer models and COATI optimization techniques. The proposed hybrid Deepnet (HY-Deepnet) framework consists of two main phases: detection and diagnosis. The detection phase aims at identifying the presence of disease with the aid of MRI images. This phase evaluates the performance of various deep learning models, including AlexNet, GoogLenet, SqueezeNet, VGGNet, ResNet and explores their combinations. Experimental results reveal that the combination of AlexNet, GoogLenet, and VGGNet outperforms other networks and their combinations, achieving an accuracy of 77.03% without optimization. The second phase focuses on the diagnosis of the detected disease into three different stages. The diagnosis phase is improved from COATI optimization techniques. The proposed HY-Deepnet thus attains an impressive overall accuracy of 97.6%, accompanied by precision, recall, and F1 scores of 0.978, 0.976, and 0.974, respectively. These results underscore the effectiveness of the framework in enhancing Alzheimer’s detection and diagnosis, particularly when leveraging the synergy of deep transfer models and COATI optimization techniques.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"68 ","pages":"Article 102058"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HY-Deepnet : A new Optimal Deep transfer learning empowered framework for an autonomous Alzheimer’s disease detection and diagnosis system\",\"authors\":\"S. Veluchamy ,&nbsp;R. Bhuvaneswari ,&nbsp;K. Ashwini ,&nbsp;Samah Alshathri ,&nbsp;Walid El-Shafai\",\"doi\":\"10.1016/j.jestch.2025.102058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A progressive neurological disorder, Alzheimer’s disease (AD) predominantly impacts memory and cognitive functions of diseased victims. The disease is usually identified by the buildup of abnormal protein deposits in the brain, resulting in the development of plaques and tangles that interfere with communication between nerve cells. Over time, those affected by Alzheimer’s undergo a diminishing mental capacity, affecting their daily activities and ultimately resulting in a loss of independence. While there is currently no remedy to reverse the advancement of Alzheimer’s disease, identifying the initiation of AD can prove highly beneficial within the medical field. This study presents an innovative framework for the detection and diagnosis of Alzheimer’s disease, employing deep transfer models and COATI optimization techniques. The proposed hybrid Deepnet (HY-Deepnet) framework consists of two main phases: detection and diagnosis. The detection phase aims at identifying the presence of disease with the aid of MRI images. This phase evaluates the performance of various deep learning models, including AlexNet, GoogLenet, SqueezeNet, VGGNet, ResNet and explores their combinations. Experimental results reveal that the combination of AlexNet, GoogLenet, and VGGNet outperforms other networks and their combinations, achieving an accuracy of 77.03% without optimization. The second phase focuses on the diagnosis of the detected disease into three different stages. The diagnosis phase is improved from COATI optimization techniques. The proposed HY-Deepnet thus attains an impressive overall accuracy of 97.6%, accompanied by precision, recall, and F1 scores of 0.978, 0.976, and 0.974, respectively. These results underscore the effectiveness of the framework in enhancing Alzheimer’s detection and diagnosis, particularly when leveraging the synergy of deep transfer models and COATI optimization techniques.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"68 \",\"pages\":\"Article 102058\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098625001132\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625001132","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种进行性神经系统疾病,主要影响患者的记忆和认知功能。这种疾病通常通过大脑中异常蛋白质沉积的积累来识别,导致斑块和缠结的发展,干扰神经细胞之间的交流。随着时间的推移,老年痴呆症患者的心智能力会逐渐下降,影响他们的日常活动,最终导致丧失独立性。虽然目前还没有药物可以逆转阿尔茨海默病的发展,但在医学领域,确定AD的起始可以证明是非常有益的。本研究采用深度转移模型和COATI优化技术,提出了一种用于阿尔茨海默病检测和诊断的创新框架。提出的混合深度网络(HY-Deepnet)框架包括两个主要阶段:检测和诊断。检测阶段的目的是借助MRI图像识别疾病的存在。该阶段评估各种深度学习模型的性能,包括AlexNet、GoogLenet、SqueezeNet、VGGNet、ResNet,并探索它们的组合。实验结果表明,AlexNet、GoogLenet和VGGNet的组合优于其他网络及其组合,未经优化的准确率达到77.03%。第二阶段的重点是将发现的疾病分为三个不同的阶段进行诊断。在COATI优化技术的基础上改进了诊断阶段。因此,提出的HY-Deepnet总体准确率达到了令人印象深刻的97.6%,同时精度、召回率和F1得分分别为0.978、0.976和0.974。这些结果强调了该框架在增强阿尔茨海默病检测和诊断方面的有效性,特别是在利用深度转移模型和COATI优化技术的协同作用时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HY-Deepnet : A new Optimal Deep transfer learning empowered framework for an autonomous Alzheimer’s disease detection and diagnosis system
A progressive neurological disorder, Alzheimer’s disease (AD) predominantly impacts memory and cognitive functions of diseased victims. The disease is usually identified by the buildup of abnormal protein deposits in the brain, resulting in the development of plaques and tangles that interfere with communication between nerve cells. Over time, those affected by Alzheimer’s undergo a diminishing mental capacity, affecting their daily activities and ultimately resulting in a loss of independence. While there is currently no remedy to reverse the advancement of Alzheimer’s disease, identifying the initiation of AD can prove highly beneficial within the medical field. This study presents an innovative framework for the detection and diagnosis of Alzheimer’s disease, employing deep transfer models and COATI optimization techniques. The proposed hybrid Deepnet (HY-Deepnet) framework consists of two main phases: detection and diagnosis. The detection phase aims at identifying the presence of disease with the aid of MRI images. This phase evaluates the performance of various deep learning models, including AlexNet, GoogLenet, SqueezeNet, VGGNet, ResNet and explores their combinations. Experimental results reveal that the combination of AlexNet, GoogLenet, and VGGNet outperforms other networks and their combinations, achieving an accuracy of 77.03% without optimization. The second phase focuses on the diagnosis of the detected disease into three different stages. The diagnosis phase is improved from COATI optimization techniques. The proposed HY-Deepnet thus attains an impressive overall accuracy of 97.6%, accompanied by precision, recall, and F1 scores of 0.978, 0.976, and 0.974, respectively. These results underscore the effectiveness of the framework in enhancing Alzheimer’s detection and diagnosis, particularly when leveraging the synergy of deep transfer models and COATI optimization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信