用于高性能对称超级电容器的多孔花状VO2簇的可控ni掺杂和保形NiO涂层

Mingxing Zhang, Huang Zhang, Yu Li, Fan Wang, Huihua Li, Jiawei Zhang, Minghua Chen
{"title":"用于高性能对称超级电容器的多孔花状VO2簇的可控ni掺杂和保形NiO涂层","authors":"Mingxing Zhang,&nbsp;Huang Zhang,&nbsp;Yu Li,&nbsp;Fan Wang,&nbsp;Huihua Li,&nbsp;Jiawei Zhang,&nbsp;Minghua Chen","doi":"10.1016/j.nxener.2025.100304","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing demand for high-performance energy storage devices, vanadium dioxide (VO<sub>2</sub>) has been emerged as a promising electrode material for supercapacitors due to its unique physicochemical properties and abundant resources. However, the intercalation-pseudocapacitive mechanism and solubility in aqueous electrolytes present challenges to achieving high specific capacitance and cycling stability. This study demonstrates a synergetic modification strategy by introducing nickel dopants and a protective NiO layer to enhance the performance of VO<sub>2</sub> electrode materials via a solvothermal method combined with atomic layer deposition (ALD) technology. The synergistic effect of nickel doping ratio and NiO layer thickness on electrochemical performance is systematically investigated. Results show that nickel doping significantly improves the conductivity and activates additional electrochemical sites, enhancing both rate capability and specific capacitance. The conformal NiO layer coating effectively mitigates the VO<sub>2</sub> dissolution, leading to improved cycling stability. A quasi-solid-state symmetric supercapacitor using the optimized Ni-VO2@NiO200 composite electrodes delivers a maximum energy density of 4.03 Wh kg<sup>−1</sup> and maintains 72.8% capacitance retention after 2500 cycles, significantly outperforming pristine VO<sub>2</sub>. These findings demonstrate the feasibility of VO<sub>2</sub> with structural modification as a high-performance electrode material for supercapacitors, offering valuable insights for future material design in electrochemical energy storage applications.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100304"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable Ni-doping and conformal NiO coating of porous flower-like VO2 clusters for high-performance symmetric supercapacitors\",\"authors\":\"Mingxing Zhang,&nbsp;Huang Zhang,&nbsp;Yu Li,&nbsp;Fan Wang,&nbsp;Huihua Li,&nbsp;Jiawei Zhang,&nbsp;Minghua Chen\",\"doi\":\"10.1016/j.nxener.2025.100304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the growing demand for high-performance energy storage devices, vanadium dioxide (VO<sub>2</sub>) has been emerged as a promising electrode material for supercapacitors due to its unique physicochemical properties and abundant resources. However, the intercalation-pseudocapacitive mechanism and solubility in aqueous electrolytes present challenges to achieving high specific capacitance and cycling stability. This study demonstrates a synergetic modification strategy by introducing nickel dopants and a protective NiO layer to enhance the performance of VO<sub>2</sub> electrode materials via a solvothermal method combined with atomic layer deposition (ALD) technology. The synergistic effect of nickel doping ratio and NiO layer thickness on electrochemical performance is systematically investigated. Results show that nickel doping significantly improves the conductivity and activates additional electrochemical sites, enhancing both rate capability and specific capacitance. The conformal NiO layer coating effectively mitigates the VO<sub>2</sub> dissolution, leading to improved cycling stability. A quasi-solid-state symmetric supercapacitor using the optimized Ni-VO2@NiO200 composite electrodes delivers a maximum energy density of 4.03 Wh kg<sup>−1</sup> and maintains 72.8% capacitance retention after 2500 cycles, significantly outperforming pristine VO<sub>2</sub>. These findings demonstrate the feasibility of VO<sub>2</sub> with structural modification as a high-performance electrode material for supercapacitors, offering valuable insights for future material design in electrochemical energy storage applications.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"8 \",\"pages\":\"Article 100304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着高性能储能器件需求的不断增长,二氧化钒(VO2)以其独特的物理化学性质和丰富的资源成为超级电容器极材。然而,插入-假电容机制和在水溶液中的溶解性对实现高比电容和循环稳定性提出了挑战。本研究通过溶剂热法结合原子层沉积(ALD)技术,通过引入镍掺杂剂和NiO保护层的协同改性策略来提高VO2电极材料的性能。系统地研究了镍掺杂比和NiO层厚度对电化学性能的协同效应。结果表明,镍的掺杂显著提高了电导率,激活了额外的电化学位点,提高了倍率能力和比电容。保形NiO涂层有效地减缓了VO2的溶解,提高了循环稳定性。使用优化Ni-VO2@NiO200复合电极的准固态对称超级电容器可提供4.03 Wh kg−1的最大能量密度,并在2500次循环后保持72.8%的电容保持率,显著优于原始VO2。这些发现证明了经过结构修饰的VO2作为超级电容器高性能电极材料的可行性,为未来电化学储能应用中的材料设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Ni-doping and conformal NiO coating of porous flower-like VO2 clusters for high-performance symmetric supercapacitors
With the growing demand for high-performance energy storage devices, vanadium dioxide (VO2) has been emerged as a promising electrode material for supercapacitors due to its unique physicochemical properties and abundant resources. However, the intercalation-pseudocapacitive mechanism and solubility in aqueous electrolytes present challenges to achieving high specific capacitance and cycling stability. This study demonstrates a synergetic modification strategy by introducing nickel dopants and a protective NiO layer to enhance the performance of VO2 electrode materials via a solvothermal method combined with atomic layer deposition (ALD) technology. The synergistic effect of nickel doping ratio and NiO layer thickness on electrochemical performance is systematically investigated. Results show that nickel doping significantly improves the conductivity and activates additional electrochemical sites, enhancing both rate capability and specific capacitance. The conformal NiO layer coating effectively mitigates the VO2 dissolution, leading to improved cycling stability. A quasi-solid-state symmetric supercapacitor using the optimized Ni-VO2@NiO200 composite electrodes delivers a maximum energy density of 4.03 Wh kg−1 and maintains 72.8% capacitance retention after 2500 cycles, significantly outperforming pristine VO2. These findings demonstrate the feasibility of VO2 with structural modification as a high-performance electrode material for supercapacitors, offering valuable insights for future material design in electrochemical energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信