Wajeha Tauqir , Pengfei Xu , George M Bollas , Matthew D Stuber
{"title":"海水淡化系统需要精确的模型","authors":"Wajeha Tauqir , Pengfei Xu , George M Bollas , Matthew D Stuber","doi":"10.1016/j.coche.2025.101147","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling serves as the nexus connecting design, control, and optimization in desalination process systems while also providing insights into the interplay between process-level and property-level phenomena. Modeling desalination processes presents challenges due to the complex thermophysical properties and nonideality of multielectrolyte solutions, especially at high concentrations. In this mini-review, we examine the current state of several widely used process modeling tools, their features, and the adaptability to modeling state-of-the-art desalination process systems. We also discuss thermodynamic models of electrolyte solutions and their ability to accurately predict the thermodynamic properties of aqueous multielectrolyte solutions. We conclude that refining and tailoring fundamental thermodynamic models to address the complexities of high-concentration regimes is essential for the design of advanced desalination systems and achieving improvements in energetic and economic efficiencies.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101147"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate model needs for desalination systems\",\"authors\":\"Wajeha Tauqir , Pengfei Xu , George M Bollas , Matthew D Stuber\",\"doi\":\"10.1016/j.coche.2025.101147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling serves as the nexus connecting design, control, and optimization in desalination process systems while also providing insights into the interplay between process-level and property-level phenomena. Modeling desalination processes presents challenges due to the complex thermophysical properties and nonideality of multielectrolyte solutions, especially at high concentrations. In this mini-review, we examine the current state of several widely used process modeling tools, their features, and the adaptability to modeling state-of-the-art desalination process systems. We also discuss thermodynamic models of electrolyte solutions and their ability to accurately predict the thermodynamic properties of aqueous multielectrolyte solutions. We conclude that refining and tailoring fundamental thermodynamic models to address the complexities of high-concentration regimes is essential for the design of advanced desalination systems and achieving improvements in energetic and economic efficiencies.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101147\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000589\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000589","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Modeling serves as the nexus connecting design, control, and optimization in desalination process systems while also providing insights into the interplay between process-level and property-level phenomena. Modeling desalination processes presents challenges due to the complex thermophysical properties and nonideality of multielectrolyte solutions, especially at high concentrations. In this mini-review, we examine the current state of several widely used process modeling tools, their features, and the adaptability to modeling state-of-the-art desalination process systems. We also discuss thermodynamic models of electrolyte solutions and their ability to accurately predict the thermodynamic properties of aqueous multielectrolyte solutions. We conclude that refining and tailoring fundamental thermodynamic models to address the complexities of high-concentration regimes is essential for the design of advanced desalination systems and achieving improvements in energetic and economic efficiencies.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.