反周期切换动力系统及其在混沌系统中的应用:一种定时分数阶滑模控制方法

Q1 Mathematics
Saim Ahmed , Hasib Khan , Ahmad Taher Azar , Jehad Alzabut
{"title":"反周期切换动力系统及其在混沌系统中的应用:一种定时分数阶滑模控制方法","authors":"Saim Ahmed ,&nbsp;Hasib Khan ,&nbsp;Ahmad Taher Azar ,&nbsp;Jehad Alzabut","doi":"10.1016/j.padiff.2025.101213","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents an analysis of a new class anti-periodic switching dynamical system in chaotic power systems, incorporating a fixed-time control strategy. Theoretical insights, based on fixed point theorems (FPTs) and stability principles, are coupled with computational techniques to address system complexities. A robust control strategy utilizing fixed-time fractional-order sliding mode control is formulated to efficiently manage nonlinear dynamics. The Lyapunov proposition is employed to assess stability properties. The comparative analysis demonstrates the effectiveness of the approach in achieving trajectory tracking and fixed-time convergence goals. This interdisciplinary study bridges insights from chaotic power systems with control strategies, offering a valuable contribution to understanding and application in complex dynamical systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101213"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-periodic switching dynamical system with application to chaotic system: A fixed-time fractional-order sliding mode control approach\",\"authors\":\"Saim Ahmed ,&nbsp;Hasib Khan ,&nbsp;Ahmad Taher Azar ,&nbsp;Jehad Alzabut\",\"doi\":\"10.1016/j.padiff.2025.101213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper presents an analysis of a new class anti-periodic switching dynamical system in chaotic power systems, incorporating a fixed-time control strategy. Theoretical insights, based on fixed point theorems (FPTs) and stability principles, are coupled with computational techniques to address system complexities. A robust control strategy utilizing fixed-time fractional-order sliding mode control is formulated to efficiently manage nonlinear dynamics. The Lyapunov proposition is employed to assess stability properties. The comparative analysis demonstrates the effectiveness of the approach in achieving trajectory tracking and fixed-time convergence goals. This interdisciplinary study bridges insights from chaotic power systems with control strategies, offering a valuable contribution to understanding and application in complex dynamical systems.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了混沌电力系统中一类新的含固定时间控制策略的反周期切换动态系统。基于不动点定理(FPTs)和稳定性原理的理论见解与计算技术相结合,以解决系统的复杂性。为了有效地控制非线性动力学,提出了一种采用定时分数阶滑模控制的鲁棒控制策略。采用李亚普诺夫命题来评价稳定性。对比分析表明了该方法在实现轨迹跟踪和定时收敛目标方面的有效性。这项跨学科的研究将混沌电力系统与控制策略联系起来,为复杂动力系统的理解和应用提供了宝贵的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-periodic switching dynamical system with application to chaotic system: A fixed-time fractional-order sliding mode control approach
The paper presents an analysis of a new class anti-periodic switching dynamical system in chaotic power systems, incorporating a fixed-time control strategy. Theoretical insights, based on fixed point theorems (FPTs) and stability principles, are coupled with computational techniques to address system complexities. A robust control strategy utilizing fixed-time fractional-order sliding mode control is formulated to efficiently manage nonlinear dynamics. The Lyapunov proposition is employed to assess stability properties. The comparative analysis demonstrates the effectiveness of the approach in achieving trajectory tracking and fixed-time convergence goals. This interdisciplinary study bridges insights from chaotic power systems with control strategies, offering a valuable contribution to understanding and application in complex dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信