从非abel基交换到带系数基交换

IF 0.7 2区 数学 Q2 MATHEMATICS
Peter J. Haine
{"title":"从非abel基交换到带系数基交换","authors":"Peter J. Haine","doi":"10.1016/j.jpaa.2025.107993","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this paper is to explain when basechange theorems for sheaves of spaces imply basechange for sheaves with coefficients in other presentable ∞-categories. We accomplish this by analyzing when the tensor product of presentable ∞-categories preserves left adjointable squares. As a sample result, we show that the Proper Basechange Theorem in topology holds with coefficients in any presentable ∞-category which is compactly generated or stable. We also prove results about the interaction between tensor products of presentable ∞-categories and various categorical constructions that are of independent interest. For example, we show that tensoring with a compactly generated presentable ∞-category preserves fully faithful or conservative left exact left adjoints. We also show that tensoring with a presentable ∞-category that is compactly generated or stable preserves recollements.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107993"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From nonabelian basechange to basechange with coefficients\",\"authors\":\"Peter J. Haine\",\"doi\":\"10.1016/j.jpaa.2025.107993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of this paper is to explain when basechange theorems for sheaves of spaces imply basechange for sheaves with coefficients in other presentable ∞-categories. We accomplish this by analyzing when the tensor product of presentable ∞-categories preserves left adjointable squares. As a sample result, we show that the Proper Basechange Theorem in topology holds with coefficients in any presentable ∞-category which is compactly generated or stable. We also prove results about the interaction between tensor products of presentable ∞-categories and various categorical constructions that are of independent interest. For example, we show that tensoring with a compactly generated presentable ∞-category preserves fully faithful or conservative left exact left adjoints. We also show that tensoring with a presentable ∞-category that is compactly generated or stable preserves recollements.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107993\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492500132X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500132X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是解释空间束的基交换定理在什么情况下意味着其他可呈现的∞-范畴中具有系数的束的基交换。我们通过分析可呈现的∞-范畴的张量积何时保留左伴方来实现这一点。作为一个示例结果,我们证明了拓扑中的固有基交换定理对于紧生成或稳定的任何可呈现的∞范畴中的系数成立。我们还证明了关于可呈现∞-范畴的张量积与各种独立感兴趣的范畴结构之间相互作用的结果。例如,我们证明了紧生成的可呈现∞范畴的张紧保留了完全忠实或保守的左精确左伴随。我们还证明了紧生成或稳定的可呈现的∞范畴的张紧保留了集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From nonabelian basechange to basechange with coefficients
The goal of this paper is to explain when basechange theorems for sheaves of spaces imply basechange for sheaves with coefficients in other presentable ∞-categories. We accomplish this by analyzing when the tensor product of presentable ∞-categories preserves left adjointable squares. As a sample result, we show that the Proper Basechange Theorem in topology holds with coefficients in any presentable ∞-category which is compactly generated or stable. We also prove results about the interaction between tensor products of presentable ∞-categories and various categorical constructions that are of independent interest. For example, we show that tensoring with a compactly generated presentable ∞-category preserves fully faithful or conservative left exact left adjoints. We also show that tensoring with a presentable ∞-category that is compactly generated or stable preserves recollements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信