Caitlin B. Dingwall , Yo Sasaki , Amy Strickland , Tong Wu , Daniel W. Summers , A. Joseph Bloom , Aaron DiAntonio , Jeffrey Milbrandt
{"title":"通过过表达磷脂酰丝氨酸脂肪酶ABHD12抑制吞噬细胞活化可保护肉瘤神经","authors":"Caitlin B. Dingwall , Yo Sasaki , Amy Strickland , Tong Wu , Daniel W. Summers , A. Joseph Bloom , Aaron DiAntonio , Jeffrey Milbrandt","doi":"10.1016/j.isci.2025.112626","DOIUrl":null,"url":null,"abstract":"<div><div>Programmed axon degeneration (AxD) is a hallmark of many neurodegenerative diseases. In healthy axons, NMNAT2 inhibits SARM1, the key executioner of AxD, to keep it from depleting NAD+ and triggering axon destruction. AxD was assumed to be governed by axon-intrinsic mechanisms, independent of external factors. However, using a human disease model of neuropathy caused by hypomorphic NMNAT2 mutations resulting in chronic SARM1 activation, we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to intrinsic metabolic failure. Chronic SARM1 activation causes axonal blebbing and disrupts phosphatidylserine (PS), a signaling molecule that promotes axon engulfment by macrophages. Neuronal expression of ABDH12, a PS lipase, reduces macrophage activation, preserves axons, and rescues motor function in this model, suggesting that PS dysregulation is an early SARM1-dependent axonal stress signal. Blocking macrophage-mediated axon elimination could be a promising therapeutic strategy for SARM1-dependent neurological diseases.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"Article 112626"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves\",\"authors\":\"Caitlin B. Dingwall , Yo Sasaki , Amy Strickland , Tong Wu , Daniel W. Summers , A. Joseph Bloom , Aaron DiAntonio , Jeffrey Milbrandt\",\"doi\":\"10.1016/j.isci.2025.112626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Programmed axon degeneration (AxD) is a hallmark of many neurodegenerative diseases. In healthy axons, NMNAT2 inhibits SARM1, the key executioner of AxD, to keep it from depleting NAD+ and triggering axon destruction. AxD was assumed to be governed by axon-intrinsic mechanisms, independent of external factors. However, using a human disease model of neuropathy caused by hypomorphic NMNAT2 mutations resulting in chronic SARM1 activation, we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to intrinsic metabolic failure. Chronic SARM1 activation causes axonal blebbing and disrupts phosphatidylserine (PS), a signaling molecule that promotes axon engulfment by macrophages. Neuronal expression of ABDH12, a PS lipase, reduces macrophage activation, preserves axons, and rescues motor function in this model, suggesting that PS dysregulation is an early SARM1-dependent axonal stress signal. Blocking macrophage-mediated axon elimination could be a promising therapeutic strategy for SARM1-dependent neurological diseases.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 6\",\"pages\":\"Article 112626\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225008879\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225008879","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves
Programmed axon degeneration (AxD) is a hallmark of many neurodegenerative diseases. In healthy axons, NMNAT2 inhibits SARM1, the key executioner of AxD, to keep it from depleting NAD+ and triggering axon destruction. AxD was assumed to be governed by axon-intrinsic mechanisms, independent of external factors. However, using a human disease model of neuropathy caused by hypomorphic NMNAT2 mutations resulting in chronic SARM1 activation, we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to intrinsic metabolic failure. Chronic SARM1 activation causes axonal blebbing and disrupts phosphatidylserine (PS), a signaling molecule that promotes axon engulfment by macrophages. Neuronal expression of ABDH12, a PS lipase, reduces macrophage activation, preserves axons, and rescues motor function in this model, suggesting that PS dysregulation is an early SARM1-dependent axonal stress signal. Blocking macrophage-mediated axon elimination could be a promising therapeutic strategy for SARM1-dependent neurological diseases.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.